Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Origin of fast charging in hard carbon anodes

An Author Correction to this article was published on 10 January 2024

This article has been updated

Abstract

Transport electrification and grid storage hinge largely on fast-charging capabilities of Li- and Na-ion batteries, but anodes such as graphite with plating issues drive the scientific focus towards anodes with slopped storage potentials. Here we report fast charging of ampere-hour-level full Na-ion batteries within about 9 minutes for continuous 3,000 cycles based on hard carbon anodes. These anodes, in addition to displaying a sloped storage voltage, provide capacity at a nearly constant voltage just above the plating potential, without observing Na-metal plating under high areal capacity. Comparing the electrochemical behaviour of Li and Na in hard carbon through experimental and computational techniques, a unified storage mechanism relying on the dimensions of wedge nanopores and drawing parallels with underpotential deposition for metals is brought forward, providing a rational guide for achieving fast storage in hard carbon anodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ultrafast NIBs.
Fig. 2: Electrochemical behaviours of Li and Na storage in HCSs.
Fig. 3: Quantitative Na storage mechanism analysis.
Fig. 4: Wedge nanopore kinetics.

Similar content being viewed by others

Change history

References

  1. Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Lin, M.-C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

    Article  ADS  CAS  Google Scholar 

  3. Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Article  ADS  Google Scholar 

  4. Attia, P. M. et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 578, 397–402 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Zhang, W. et al. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Cai, W. et al. A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 49, 3806–3833 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Li, Y., Lu, Y., Adelhelm, P., Titirici, M.-M. & Hu, Y.-S. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48, 4655–4687 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Sun, H. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Griffith, K. J., Wiaderek, K. M., Cibin, G., Marbella, L. E. & Grey, C. P. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559, 556–563 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Jin, H. et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370, 192–197 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Liu, H. et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63–67 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Chen, K.-H. et al. Enabling 6C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes. Adv. Energy Mater. 11, 2003336 (2021).

    Article  CAS  Google Scholar 

  13. Komaba, S. et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011).

    Article  CAS  Google Scholar 

  14. Li, Y. et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 9, 1902852 (2019).

    Article  CAS  Google Scholar 

  15. Pu, X. et al. Recent progress in rechargeable sodium-ion batteries: toward high-power applications. Small 15, 1805427 (2019).

    Article  Google Scholar 

  16. Liu, T. et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 12, 1512–1533 (2019).

    Article  CAS  Google Scholar 

  17. Usiskin, R. et al. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 6, 1020–1035 (2021).

    Article  ADS  CAS  Google Scholar 

  18. Rudola, A., Wright, C. J. & Barker, J. Communication—surprisingly high fast charge volumetric capacities of hard carbon electrodes in sodium-ion batteries. J. Electrochem. Soc. 168, 110534 (2021).

    Article  ADS  CAS  Google Scholar 

  19. Dahn, J. R., Zheng, T., Liu, Y. & Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Saurel, D. et al. From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 8, 1703268 (2018).

    Article  Google Scholar 

  21. Moon, H. et al. Assessing the reactivity of hard carbon anodes: linking material properties with electrochemical response upon sodium- and lithium-ion storage. Batteries Supercaps 4, 960–977 (2021).

    Article  CAS  Google Scholar 

  22. Kubota, K. et al. Structural analysis of sucrose-derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion. Chem. Mater. 32, 2961–2977 (2020).

    Article  CAS  Google Scholar 

  23. Stevens, D. A. & Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148, A803 (2001).

    Article  CAS  Google Scholar 

  24. Alvin, S. et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 10, 2000283 (2020).

    Article  CAS  Google Scholar 

  25. Stratford, J. M. et al. Correlating local structure and sodium storage in hard carbon anodes: insights from pair distribution function analysis and solid-state NMR. J. Am. Chem. Soc. 143, 14274–14286 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Ghimbeu, C. M. et al. Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy 44, 327–335 (2018).

    Article  Google Scholar 

  27. Mu, L. et al. Electrochemical properties of novel O3-NaCu1/9Ni2/9Fe1/3Mn1/3O2 as cathode material for sodium-ion batteries. Energy Storage Sci. Technol. 5, 324 (2016).

    Google Scholar 

  28. Heenan, T. M. M. et al. Mapping internal temperatures during high-rate battery applications. Nature 617, 507–512 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Wang, C.-Y. et al. Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Li, Y., Lu, Y., Chen, L. & Hu, Y.-S. Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries. Chin. Phys. B 29, 048201 (2020).

    Article  ADS  CAS  Google Scholar 

  31. Zhang, S. S. The puzzles in fast charging of Li-ion batteries. Energy Environ. Mater. 5, 1005–1007 (2022).

    Article  CAS  Google Scholar 

  32. Colclasure, A. M. et al. Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells. Electrochim. Acta 337, 135854 (2020).

    Article  CAS  Google Scholar 

  33. Logan, E. R. et al. Ester-based electrolytes for fast charging of energy dense lithium-ion batteries. J. Phys. Chem. C. 124, 12269–12280 (2020).

    Article  CAS  Google Scholar 

  34. Yang, X.-G. et al. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries. Joule 3, 3002–3019 (2019).

    Article  CAS  Google Scholar 

  35. Chen, D. et al. Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization. Energy Environ. Sci. 14, 2244–2262 (2021).

    Article  CAS  Google Scholar 

  36. Cohn, A. P., Share, K., Carter, R., Oakes, L. & Pint, C. L. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene. Nano Lett. 16, 543–548 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Bai, P. et al. Elucidation of the sodium-storage mechanism in hard carbons. Adv. Energy Mater. 8, 1703217 (2018).

    Article  ADS  Google Scholar 

  38. Sangavi, S., Santhanamoorthi, N. & Vijayakumar, S. Density functional theory study on the adsorption of alkali metal ions with pristine and defected graphene sheet. Mol. Phys. 117, 462–473 (2019).

    Article  ADS  CAS  Google Scholar 

  39. Zhao, C. et al. High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau. Sci. Bull. 63, 1125–1129 (2018).

    Article  CAS  Google Scholar 

  40. Meng, Q. et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 4, 2608–2612 (2019).

    Article  CAS  Google Scholar 

  41. Kamiyama, A. et al. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem. Int. Ed. 60, 5114–5120 (2021).

    Article  CAS  Google Scholar 

  42. Youn, Y. et al. Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery. npj Comput. Mater. 7, 48 (2021).

    Article  ADS  CAS  Google Scholar 

  43. Stratford, J. M., Allan, P. K., Pecher, O., Chater, P. A. & Grey, C. P. Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. Chem. Commun. 52, 12430–12433 (2016).

    Article  CAS  Google Scholar 

  44. Au, H. et al. A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 13, 3469–3479 (2020).

    Article  CAS  Google Scholar 

  45. Morita, R. et al. Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes. J. Mater. Chem. A 4, 13183–13193 (2016).

    Article  CAS  Google Scholar 

  46. Herrero, E., Buller, L. J. & Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Huang, M. et al. In depth analysis of complex interfacial processes: in situ electrochemical characterization of deposition of atomic layers of Cu, Pb and Te on Pd electrodes. RSC Adv. 2, 10994–11006 (2012).

    Article  ADS  CAS  Google Scholar 

  48. Lee, H.-H., Wan, C.-C. & Wang, Y.-Y. Identity and thermodynamics of lithium intercalated in graphite. J. Power Sources 114, 285–291 (2003).

    Article  ADS  CAS  Google Scholar 

  49. Li, Q. et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. Natl Sci. Rev. 9, nwac084 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vasileiadis, A. et al. Toward optimal performance and in-depth understanding of spinel Li4Ti5O12 electrodes through phase field modeling. Adv. Funct. Mater. 28, 1705992 (2018).

    Article  Google Scholar 

  51. de Klerk, N. J. J., Vasileiadis, A., Smith, R. B., Bazant, M. Z. & Wagemaker, M. Explaining key properties of lithiation in TiO2-anatase Li-ion battery electrodes using phase-field modeling. Phys. Rev. Mater. 1, 025404 (2017).

    Article  Google Scholar 

  52. Smith, R. B. & Bazant, M. Z. Multiphase porous electrode theory. J. Electrochem. Soc. 164, E3291 (2017).

    Article  CAS  Google Scholar 

  53. Liu, K. et al. Electrochemical modeling and parameterization towards control-oriented management of lithium-ion batteries. Control Eng. Pract. 124, 105176 (2022).

    Article  Google Scholar 

  54. Ferguson, T. R. & Bazant, M. Z. Nonequilibrium thermodynamics of porous electrodes. J. Electrochem. Soc. 159, A1967 (2012).

    Article  CAS  Google Scholar 

  55. Cogswell, D. A. & Bazant, M. Z. Size-dependent phase morphologies in LiFePO4 battery particles. Electrochem. Commun. 95, 33–37 (2018).

    Article  CAS  Google Scholar 

  56. Kühne, M. et al. Reversible superdense ordering of lithium between two graphene sheets. Nature 564, 234–239 (2018).

    Article  ADS  PubMed  Google Scholar 

  57. Zou, Z. et al. Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral NASICON. Adv. Energy Mater. 10, 2001486 (2020).

    Article  CAS  Google Scholar 

  58. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  59. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Lee, S.-H., Kang, J.-H. & Kang, M.-H. Structural properties of semiconductors in the generalized gradient approximation. J. Korean Phys. Soc. 31, 811 (1997).

    CAS  Google Scholar 

  61. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  62. Van der Ven, A., Aydinol, M. K., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58, 2975–2987 (1998).

    Article  ADS  Google Scholar 

  63. Wagemaker, M. et al. Thermodynamics of spinel LixTiO2 from first principles. Chem. Phys. 317, 130–136 (2005).

    Article  CAS  Google Scholar 

  64. Aydinol, M. K., Kohan, A. F., Ceder, G., Cho, K. & Joannopoulos, J. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56, 1354–1365 (1997).

    Article  ADS  CAS  Google Scholar 

  65. Torchio, M., Magni, L., Gopaluni, R. B., Braatz, R. D. & Raimondo, D. M. Lionsimba: a matlab framework based on a finite volume model suitable for li-ion battery design, simulation, and control. J. Electrochem. Soc. 163, A1192 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFB2402500), National Natural Science Foundation of China (52122214 and 52072403), Youth Innovation Promotion Association of the Chinese Academy of Sciences (2020006), Jiangsu Province Carbon Peak and Neutrality Innovation Program (Industry tackling on prospect and key technology BE2022002-5), and financial support is greatly acknowledged from the Netherlands Organization for Scientific Research under the VENI grant number 18123 and VICI grant number 16122.

Author information

Authors and Affiliations

Authors

Contributions

Y.X.L., M.W. and Y-S.H. designed this work, Y.Q.L. synthesized the carbon electrodes and carried out the electrochemical experiments and materials characterization, A.V. performed first-principle calculations, P.O. performed mesoscale phase-field modelling simulations and Q.Z., Q.M. and J.Z. prepared the 26700-type cells. Y.Q.L., A.V., Y.X.L., P.O., M.W. and Y.-S.H. wrote the paper. All the authors participated in analysis of the experimental data and discussions of the results and in preparing the paper.

Corresponding authors

Correspondence to Yaxiang Lu, Marnix Wagemaker or Yong-Sheng Hu.

Ethics declarations

Competing interests

Q.Z., Q.M., J.Z., X.Q. and Y.-S.H. are employed at HiNa Battery Technology Co. Ltd. The other authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Gui-Liang Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–42, Details of simulations, Tables 1–3, Description of Video 1, Note 1 and References.

Supplementary Video 1

The video depicts a Na atom approaching another Na atom. For distances below 4 Å, the Na atoms associate and the Na pair diffuses together for 0.4 ps.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Vasileiadis, A., Zhou, Q. et al. Origin of fast charging in hard carbon anodes. Nat Energy 9, 134–142 (2024). https://doi.org/10.1038/s41560-023-01414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01414-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing