Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase

Subjects

Abstract

Li+ desolvation in electrolytes and diffusion at the solid–electrolyte interphase (SEI) are two determining steps that restrict the fast charging of graphite-based lithium-ion batteries. Here we show that the low-solvent-coordination Li+ solvation structure could be induced near the inner Helmholtz plane on inorganic species. Specifically, Li3P could enable a lower Li+ desolvation barrier and faster Li+ diffusion capability through the SEI in comparison to the regular SEI components. We construct an ultrathin S-bridged phosphorus layer on a graphite surface, which in situ converts to crystalline Li3P-based SEI with high ionic conductivity. Our pouch cells with such a graphite anode show 10 min and 6 min (6C and 10C) charging for 91.2% and 80% of the capacity, respectively, as well as 82.9% capacity retention for over 2,000 cycles at a 6C charging rate. Our work reveals the importance of the SEI component and structure regulation for fast-charging LIBs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Theoretical studies of Li+ solvation structure at the anode interphase.
Fig. 2: Fabrication of P-S-graphite.
Fig. 3: Characterization of Li3P-based SEI on P-S-graphite.
Fig. 4: Electrochemical performance of graphite anode with Li3P-based SEI.
Fig. 5: Fast-charging capability of a graphite anode with Li3P-based SEI in Ah-level pouch cells.

Similar content being viewed by others

Data availability

All data are available in the article and its Supplementary Information files.

References

  1. Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Article  Google Scholar 

  2. Cai, W. et al. A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 49, 3806–3833 (2020).

    Article  Google Scholar 

  3. Li, S. et al. Fast charging anode materials for lithium‐ion batteries: current status and perspectives. Adv. Funct. Mater. 32, 2200796 (2022).

    Article  MathSciNet  Google Scholar 

  4. Liu, H. et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63–67 (2020).

    Article  Google Scholar 

  5. Griffith, K. J., Wiaderek, K. M., Cibin, G., Marbella, L. E. & Grey, C. P. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559, 556–563 (2018).

    Article  Google Scholar 

  6. Meintz, A. et al. Enabling fast charging–vehicle considerations. J. Power Sources 367, 216–227 (2017).

    Article  Google Scholar 

  7. Ni, Q. et al. An extremely fast charging Li3V2(PO4)3 cathode at a 4.8 V cutoff voltage for Li-ion batteries. ACS Energy Lett. 5, 1763–1770 (2020).

    Article  Google Scholar 

  8. Tu, S. et al. Single-layer-particle electrode design for practical fast-charging lithium-ion batteries. Adv. Mater. 34, 2202892 (2022).

    Article  Google Scholar 

  9. Wang, C.-Y. et al. Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022).

    Article  Google Scholar 

  10. Lu, L. L. et al. Superior fast-charging lithium-ion batteries enabled by the high-speed solid-state lithium transport of an intermetallic Cu6Sn5 Network. Adv. Mater. 34, 2202688 (2022).

    Article  Google Scholar 

  11. Ahmed, S. et al. Enabling fast charging–a battery technology gap assessment. J. Power Sources 367, 250–262 (2017).

  12. Mao, C., Ruther, R. E., Li, J., Du, Z. & Belharouak, I. Identifying the limiting electrode in lithium ion batteries for extreme fast charging. Electrochem. Commun. 97, 37–41 (2018).

    Article  Google Scholar 

  13. Tian, R. et al. Quantifying the factors limiting rate performance in battery electrodes. Nat. Commun. 10, 1933 (2019).

    Article  Google Scholar 

  14. Jow, T. R., Delp, S. A., Allen, J. L., Jones, J.-P. & Smart, M. C. Factors limiting Li+ charge transfer kinetics in Li-ion batteries. J. Electrochem. Soc. 165, A361–A367 (2018).

    Article  Google Scholar 

  15. Zhang, S. S., Ma, L., Allen, J. L. & Read, J. A. Stabilizing capacity retention of Li-ion battery in fast-charge by reducing particle size of graphite. J. Electrochem. Soc. 168, 040519 (2021).

    Article  Google Scholar 

  16. Baek, M., Kim, J., Jin, J. & Choi, J. W. Photochemically driven solid electrolyte interphase for extremely fast-charging lithium-ion batteries. Nat. Commun. 12, 6807 (2021).

    Article  Google Scholar 

  17. Chen, K. H. et al. Enabling 6C fast charging of Li‐ion batteries with graphite/hard carbon hybrid anodes. Adv. Energy Mater. 11, 2003336 (2020).

    Article  Google Scholar 

  18. Sun, C. et al. 50C fast-charge Li-ion batteries using a graphite anode. Adv. Mater. 34, 2206020 (2022).

    Article  Google Scholar 

  19. Kazyak, E., Chen, K. H., Chen, Y., Cho, T. H. & Dasgupta, N. P. Enabling 4C fast charging of lithium‐ion batteries by coating graphite with a solid‐state electrolyte. Adv. Energy Mater. 12, 2102618 (2021).

    Article  Google Scholar 

  20. Lee, S. M. et al. A cooperative biphasic MoOx-MoPx promoter enables a fast-charging lithium-ion battery. Nat. Commun. 12, 39 (2021).

    Article  Google Scholar 

  21. Heiskanen, S. K., Kim, J. & Lucht, B. L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 3, 2322–2333 (2019).

    Article  Google Scholar 

  22. Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).

    Article  Google Scholar 

  23. Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).

    Article  Google Scholar 

  24. Qin, N. et al. Over‐potential tailored thin and dense lithium carbonate growth in solid electrolyte interphase for advanced lithium ion batteries. Adv. Energy Mater. 12, 2103402 (2022).

    Article  Google Scholar 

  25. Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

    Article  Google Scholar 

  26. Jiang, L. L. et al. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem., Int. Ed. 60, 3402–3406 (2021).

    Article  Google Scholar 

  27. Shi, J. et al. Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation: fluorosulfonyl isocyanate as electrolyte additive. J. Power Sources 429, 67–74 (2019).

    Article  Google Scholar 

  28. Yang, Y. et al. Rechargeable LiNi0.65Co0.15Mn0.2O2||graphite batteries operating at −60 °C. Angew. Chem., Int. Ed. 61, 202209619 (2022).

    Article  Google Scholar 

  29. Yang, Y. et al. Synergy of weakly-solvated electrolyte and optimized interphase enables graphite anode charge at low temperature. Angew. Chem., Int. Ed. 61, 202208345 (2022).

    Article  Google Scholar 

  30. Sun, Y. et al. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule 3, 1080–1093 (2019).

    Article  Google Scholar 

  31. Xu, K., von Cresce, A. & Lee, U. Differentiating contributions to ‘ion transfer’ barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26, 11538–11543 (2010).

    Article  Google Scholar 

  32. Li, Y. & Qi, Y. Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface. Energy Environ. Sci. 12, 1286–1295 (2019).

    Article  Google Scholar 

  33. Xin, S. et al. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 134, 18510–18513 (2012).

    Article  Google Scholar 

  34. Zhou, J. et al. High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries. Chem 6, 221–233 (2020).

    Article  Google Scholar 

  35. Chuang, C.-C., Hsieh, Y.-Y., Chang, W.-C. & Tuan, H.-Y. Phosphorus-sulfur/graphene composites as flexible lithium-sulfur battery cathodes with super high volumetric capacity. Chem. Eng. J. 387, 123904 (2020).

    Article  Google Scholar 

  36. Marino, C., El Kazzi, M., Berg, E. J., He, M. & Villevieille, C. Interface and safety properties of phosphorus-based negative electrodes in Li-ion batteries. Chem. Mater. 29, 7151–7158 (2017).

    Article  Google Scholar 

  37. Shi, P. et al. The synergetic effect of lithium bisoxalatodifluorophosphate and fluoroethylene carbonate on dendrite suppression for fast charging lithium metal batteries. Small 16, 2001989 (2020).

    Article  Google Scholar 

  38. Kim, N., Chae, S., Ma, J., Ko, M. & Cho, J. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat. Commun. 8, 812 (2017).

    Article  Google Scholar 

  39. Huang, W. et al. Evolution of the solid-electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy. Nano Lett. 19, 5140–5148 (2019).

    Article  Google Scholar 

  40. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  Google Scholar 

  41. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  Google Scholar 

  42. Monti, S., Carravetta, V. & Ågren, H. Simulation of gold functionalization with cysteine by reactive molecular dynamics. J. Phys. Chem. Lett. 7, 272–276 (2016).

    Article  Google Scholar 

  43. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  Google Scholar 

  44. Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

    Article  Google Scholar 

  45. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  Google Scholar 

  46. Dauber-Osguthorpe, P. et al. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins: Struct. Funct. Bioinforma. 4, 31–47 (1988).

    Article  Google Scholar 

  47. Campañá, C., Mussard, B. & Woo, T. K. Electrostatic potential derived atomic charges for periodic systems using a modified error functional. J. Chem. Theory Comput. 5, 2866–2878 (2009).

    Article  Google Scholar 

  48. Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles (CRC Press, 2021).

    Book  Google Scholar 

  49. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  Google Scholar 

  50. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  Google Scholar 

  51. Fiorin, G., Klein, M. & Hénin, J. Using collective variables to drive molecular dynamics simulations. Mol. Phys. 111, 3345–3362 (2013).

    Article  Google Scholar 

  52. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  Google Scholar 

  53. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  Google Scholar 

  54. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  55. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  56. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  57. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  58. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  59. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of China (Grant No. 52072137). We would like to thank the Analytical and Testing Center of Huazhong University of Science and Technology for providing the facilities to conduct the transmission electron microscopy characterizations.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and S.T. conceived the idea for this work. S.T. performed the material characterizations and electrochemical measurements with assistance from Y.Z., Z.C., X.W., R.Z., Y.O., W.W., X.L. and X.D. B.Z. performed the MD simulations and DFT calculations. L.W. discussed and edited the results. S.T. and B.Z. co-wrote the original paper. Y.S. reviewed and edited the paper.

Corresponding author

Correspondence to Yongming Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks James Tour and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–35 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, S., Zhang, B., Zhang, Y. et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase. Nat Energy 8, 1365–1374 (2023). https://doi.org/10.1038/s41560-023-01387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01387-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing