Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A tin-based tandem electrocatalyst for CO2 reduction to ethanol with 80% selectivity

Abstract

Most catalysts that generate appreciable amounts of multicarbon products from electrochemical CO2 reduction are based on Cu. However, the limited understanding of C–C coupling processes over Cu-based catalysts hinders design of more efficient catalysts. Here we report a Cu-free, Sn-based electrocatalyst that exhibits high catalytic performance for reduction of CO2 to ethanol. Our data suggest the catalyst is largely composed of SnS2 nanosheets and single Sn atoms coordinated with three oxygen atoms on three-dimensional carbon. The catalyst achieves a maximum selectivity of approximately 82.5% at 0.9 VRHE (reversible hydrogen electrode, RHE) and more than 70% over a wide electrode potential window (−0.6 to −1.1 VRHE); it also maintains 97% of its initial activity (with a geometric current density of 17.8 mA cm−2 at 0.9 VRHE) after 100 hours of reaction. First principles modelling suggests that dual active centres comprising Sn and O atoms can adsorb *CHO and *CO(OH) intermediates, respectively, therefore promoting C–C bond formation through a formyl-bicarbonate coupling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The CO2RR performance of the SnS2/Sn1-O3G tandem catalyst.
Fig. 2: Structural characterizations of SnS2/Sn1-O3G and Sn1-O3G.
Fig. 3: CO2 reduction to ethanol.
Fig. 4: C–C bond formation via a formyl-bicarbonate coupling pathway (with a key intermediate 4).

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information. Source data are available at https://doi.org/10.6084/m9.figshare.24100797. Source data are provided with this paper.

References

  1. Hasselmann, K. et al. The challenge of long-term climate change. Science 302, 1923–1925 (2003).

    Article  Google Scholar 

  2. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 degrees C. Nature 458, 1158–1162 (2009).

    Article  Google Scholar 

  3. Mehling, M. A., Metcalf, G. E. & Stavins, R. N. Linking climate policies to advance global mitigation. Science 359, 997–998 (2018).

    Article  Google Scholar 

  4. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504 (2014).

    Article  Google Scholar 

  5. Zhuang, T.-T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

    Article  Google Scholar 

  6. Zhuang, T.-T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018).

    Article  Google Scholar 

  7. Huang, Y. et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single‐atom nickel catalyst. Angew. Chem. Int. Ed. 58, 2–8 (2019).

    Google Scholar 

  8. Yang, H. B. et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    Article  Google Scholar 

  9. Shih, C. F., Zhang, T., Li, J. & Bai, C. Powering the future with liquid sunshine. Joule 2, 1925–1949 (2018).

    Article  Google Scholar 

  10. Farrell, A. E. et al. Ethanol can contribute to energy and environmental goals. Science 311, 506–508 (2006).

    Article  Google Scholar 

  11. Spurgeon, J. M. & Kumar, B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11, 1536–1551 (2018).

    Article  Google Scholar 

  12. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    Article  Google Scholar 

  13. Calle-Vallejo, F. & Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu (100) electrodes. Angew. Chem. Int. Ed. 125, 7423–7426 (2013).

    Article  Google Scholar 

  14. Garza, A. J., Bell, A. T. & Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8, 1490–1499 (2018).

    Article  Google Scholar 

  15. Montoya, J. H., Peterson, A. A. & Nørskov, J. K. Insights into C–C coupling in CO2 electroreduction on copper electrodes. ChemCatChem 5, 737–742 (2013).

    Article  Google Scholar 

  16. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  Google Scholar 

  17. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  Google Scholar 

  18. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  Google Scholar 

  19. de la Peña, F. et al. Mapping titanium and tin oxide phases using EELS: an application of independent component analysis. Ultramicroscopy 111, 169–176 (2011).

    Article  Google Scholar 

  20. Hiroyuki, H. et al. Discovery of a novel Sn(II)-based oxide β-SnMoO4 for daylight-driven photocatalysis. Adv. Sci. 4, 1600246–1600253 (2017).

    Article  Google Scholar 

  21. Safonov, V. A. et al. Valence-to-core X-ray emission spectroscopy identification of carbide compounds in nanocrystalline Cr coatings deposited from Cr(III) electrolytes containing organic substances. J. Phys. Chem. B 110, 23192–23196 (2006).

    Article  Google Scholar 

  22. MacMillan, S. N. et al. Ligand-sensitive but not ligand-diagnostic: evaluating Cr valence-to-core X-ray emission spectroscopy as a probe of inner-sphere coordination. Inorg. Chem. 54, 205–214 (2015).

    Article  Google Scholar 

  23. Benedikt, L.-K. et al. Experimental and computational X-ray emission spectroscopy as a direct probe of protonation states in oxo-bridged MnIV dimers relevant to redox-active metalloproteins. Inorg. Chem. 52, 12915–12922 (2013).

    Article  Google Scholar 

  24. Zheng, X. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1, 794–805 (2017).

    Article  Google Scholar 

  25. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  26. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  27. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  28. Rossmeisl, J. Z., Qu, W., Zhu, H., Kroes, G. J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    Article  Google Scholar 

  29. Taifan, W., Boily, J.-F. & Baltrusaitis, J. Surface chemistry of carbon dioxide revisited. Surf. Sci. Rep. 71, 595–671 (2016).

    Article  Google Scholar 

  30. Freund, H. J. & Roberts, M. W. Surface chemistry of carbon dioxide. Surf. Sci. Rep. 25, 225–273 (1996).

    Article  Google Scholar 

  31. Luo, W., Nie, X., Janik, M. J. & Asthagiri, A. Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 6, 219–229 (2016).

    Article  Google Scholar 

  32. Kim, K. et al. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature 535, 131–135 (2016).

    Article  Google Scholar 

  33. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  34. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  35. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  36. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  37. Yuan, J. et al. Cu/TiO2 nanoparticles modified nitrogen-doped graphene as a highly efficient catalyst for the selective electroreduction of CO2 to different alcohols. J. CO2 Util. 24, 334–340 (2018).

    Article  Google Scholar 

  38. Kim, D., Kley, C. S., Li, Y. & Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl Acad. Sci. USA 114, 10560 (2017).

    Article  Google Scholar 

  39. Huang, Y., Handoko, A. D., Hirunsit, P. & Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 7, 1749–1756 (2017).

    Article  Google Scholar 

  40. Lee, S., Park, G. & Lee, J. Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 7, 8594–8604 (2017).

    Article  Google Scholar 

  41. Gao, D. et al. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 11, 4825–4831 (2017).

    Article  Google Scholar 

  42. Ren, D. et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015).

    Article  MathSciNet  Google Scholar 

  43. Yang, H.-P. et al. Entrapment of a pyridine derivative within a copper–palladium alloy: a bifunctional catalyst for electrochemical reduction of CO2 to alcohols with excellent selectivity and reusability. Catal. Sci. Technol. 6, 6490–6494 (2016).

    Article  Google Scholar 

  44. Ma, M., Djanashvili, K. & Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem. Int. Ed. 55, 6680–6684 (2016).

    Article  Google Scholar 

  45. Liu, Y. et al. Selective electrochemical reduction of carbon dioxide to ethanol on a boron- and nitrogen-co-doped nanodiamond. Angew. Chem. Int. Ed. 56, 15607–15611 (2017).

    Article  Google Scholar 

  46. Song, Y. et al. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew. Chem. Int. Ed. 56, 10840–10844 (2017).

    Article  Google Scholar 

  47. Grosse, P. et al. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects. Angew. Chem. Int. Ed. 57, 6192–6197 (2018).

    Article  Google Scholar 

  48. Albo, J. et al. Copper-based metal–organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem 10, 1100–1109 (2017).

    Article  Google Scholar 

  49. Huang, Y., Ong, C. W. & Yeo, B. S. Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces. ChemSusChem 11, 3299–3306 (2018).

    Article  Google Scholar 

  50. Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014).

    Article  Google Scholar 

  51. Wu, J. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016).

    Article  Google Scholar 

  52. Song, Y. et al. High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode. ChemistrySelect 1, 6055–6061 (2016).

    Article  Google Scholar 

  53. Cai, Z. et al. Hierarchical Ag–Cu interfaces promote C–C coupling in tandem CO2 electroreduction. Appl. Catal. B 325, 122310 (2023).

    Article  Google Scholar 

  54. Kuang, S. et al. Asymmetrical electrohydrogenation of CO2 to ethanol with copper–gold heterojunctions. Proc. Natl Acad. Sci. USA 120, e2214175120 (2023).

    Article  Google Scholar 

  55. Ding, L. et al. Over 70% Faradaic efficiency for CO2 electroreduction to ethanol enabled by potassium dopant-tuned interaction between copper sites and intermediates. Angew. Chem. Int. Ed. 61, e202209268 (2022).

    Article  Google Scholar 

  56. Wang, P. T. et al. Boosting electrocatalytic CO2-to-ethanol production via asymmetric C–C coupling. Nat. Commun. 13, 3754 (2022).

    Article  Google Scholar 

  57. Zang, Y. P. et al. Selective CO2 electroreduction to ethanol over a carbon-coated CuOx catalyst. Angew. Chem. Int. Ed. 61, e202209629 (2022).

    Article  Google Scholar 

  58. Xu, H. P. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 5, 623–632 (2020).

    Article  Google Scholar 

  59. Zang, D. J., Gao, X. J. J., Li, L. Y., Wei, Y. G. & Wang, H. Q. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 15, 8872–8879 (2022).

    Article  Google Scholar 

  60. Yang, Y. et al. In-situ constructed Cu/CuNC interfaces for low-overpotential reduction of CO2 to ethanol. Natl. Sci. Rev. 10, nwac248 (2022).

    Article  Google Scholar 

  61. Li, Y. G. C. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 141, 8584–8591 (2019).

    Article  Google Scholar 

  62. Su, X. Z. et al. Complementary Operando spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 13, 1322 (2022).

    Article  Google Scholar 

  63. Sun, W. P. et al. V-doped Cu2Se hierarchical nanotubes enabling flow-cell CO2 electroreduction to ethanol with high efficiency and selectivity. Adv. Mater. 34, 2207691 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y.L., X.L., L.K., Y.R. and J.Y. for XAS support and X.P. for high-resolution TEM measurements. We also thank the BL14W at the Shanghai Synchrotron Radiation Facility and BL-20A at the National Synchrotron Radiation Research Center (Hsinchu, Taiwan, Republic of China) for the XAS experiments. We thank N. Hiraoka for acquisition of XES spectra of Sn K edge in BL-12XU at SPring-8, NSRRC. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB36030200), NSFC Center for Single-Atom Catalysis, CAS Project for Young Scientists in Basic Research (YSBR-022), the National Natural Science Foundation of China (22033005, 21776269, U19A2015, 21902182, 22075195 and 21925803), the City University of Hong Kong start-up fund, the NSFC Center for Single-Atom Catalysis, the Fundamental Research Funds for the Central Universities (2023ZKPYHH01), the Guangdong Provincial Key Laboratory of Catalysis (number 2020B121201002) and Photon Science Research Center for Carbon Neutrality.

Author information

Authors and Affiliations

Authors

Contributions

J.D., H.B.Y., Y.H., T.Z. and B.L. conceived and designed the project. J.D. conducted the materials synthesis and electrochemical measurements. J.D. and S.L. built the NMR analysis methods. W.L. performed the HADDF-STEM measurement. X.-L.M. and J.L. carried out the DFT modelling and analysed the mechanism. Q.M. performed the kinetics simulation. J.D., H.B.Y. and B.L. analysed the experimental data and wrote the paper with the help from all authors.

Corresponding authors

Correspondence to Yanqiang Huang, Jun Li or Bin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Michal Bajdich and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Table of contents, Supplementary Figs. 1–58, Tables 1–19, Notes 1–14 and References.

Supplementary Data 1

Source data for NMR plots shown in the supplementary figures.

Supplementary Data 2

The optimized computational models, the energy in the reaction.

Source data

Source Data Fig. 1

Source data Fig. 1.

Source Data Fig. 2

Source data Fig. 2.

Source Data Fig. 3

Source data Fig. 3.

Source Data Fig. 4

Source data Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Bin Yang, H., Ma, XL. et al. A tin-based tandem electrocatalyst for CO2 reduction to ethanol with 80% selectivity. Nat Energy 8, 1386–1394 (2023). https://doi.org/10.1038/s41560-023-01389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01389-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing