Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imidazolium-functionalized Mo3P nanoparticles with an ionomer coating for electrocatalytic reduction of CO2 to propane

Abstract

Propane is a tri-carbon (C3) alkane widely used as a fuel. Despite recent advances in CO2 electrocatalysis, the production of C3+ molecules directly from CO2 is challenging due to high reaction barriers and competing reactions to C1, C2 and H2 products. Here we report a catalytic system composed of 1-ethyl-3-methylimidazolium-functionalized Mo3P nanoparticles coated with an anion-exchange ionomer that produces propane from CO2 with a current density of −395 mA cm2 and a Faradaic efficiency of 91% at −0.8 V versus reversible hydrogen electrode over 100 h in an electrolyser. Our characterization and density functional theory calculations suggest that imidazolium functionalization improves the electrocatalytic properties of Mo atoms at the surface and favours the pathway towards propane by increasing the adsorption energies of carbon-based intermediates on the Mo sites. Our results indicate that the ionomer coating layer plays a crucial role in stabilizing the imidazolium-functionalized surface of Mo3P nanoparticles during long-term testing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterizations of the catalyst microenvironment of the developed ImF-Mo3P electrocatalytic system studied in a flow electrolyser.
Fig. 2: Electrocatalytic performance of ImF-Mo3P and Mo3P catalysts for the eCO2RR in a flow electrolyser using 1 M KOH electrolyte.
Fig. 3: Electronic structure analyses of the ImF-Mo3P and Mo3P catalysts.
Fig. 4: DFT results.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Gielen, D., Boshell, F. & Saygin, D. Climate and energy challenges for materials science. Nat. Mater. 15, 117–120 (2016).

    Article  Google Scholar 

  2. McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal–organic frameworks. Nature 519, 303–308 (2015).

    Article  Google Scholar 

  3. de Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  Google Scholar 

  4. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  Google Scholar 

  5. Asadi, M. et al. Highly efficient solar-driven carbon dioxide reduction on molybdenum disulfide catalyst using choline chloride-based electrolyte. Adv. Energy Mater. 9, 1803536 (2019).

    Article  Google Scholar 

  6. Esmaeilirad, M. et al. Oxygen functionalized copper nanoparticles for solar-driven conversion of carbon dioxide to methane. ACS Nano 14, 2099–2108 (2020).

    Article  Google Scholar 

  7. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  Google Scholar 

  8. Zhuang, T.-T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018).

    Article  Google Scholar 

  9. Ma, W. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020).

    Article  Google Scholar 

  10. Gao, J. et al. Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals. Nat. Chem. 15, 705–713 (2023).

    Article  Google Scholar 

  11. Azenha, C., Mateos-Pedrero, C., Alvarez-Guerra, M., Irabien, A. & Mendes, A. Binary copper–bismuth catalysts for the electrochemical reduction of CO2: study on surface properties and catalytic activity. Chem. Eng. J. 445, 136575 (2022).

    Article  Google Scholar 

  12. Calvinho, K. U. D. et al. Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ. Sci. 11, 2550–2559 (2018).

    Article  Google Scholar 

  13. Banerjee, S., Kakekhani, A., Wexler, R. B. & Rappe, A. M. Mechanistic insights into CO2 electroreduction on Ni2P: understanding its selectivity toward multicarbon products. ACS Catal. 11, 11706–11715 (2021).

    Article  Google Scholar 

  14. Calvinho, K. U. D. et al. Surface hydrides on Fe2P electrocatalyst reduce CO2 at low overpotential: steering selectivity to ethylene glycol. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.1c03428 (2021).

    Article  Google Scholar 

  15. Ji, L. et al. Highly selective electrochemical reduction of CO2 to alcohols on an FeP nanoarray. Angew. Chem. Int. Ed. 59, 758–762 (2020).

    Article  Google Scholar 

  16. Mou, S. et al. Boron phosphide nanoparticles: a non-metal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv. Mater. 31, e1903499 (2019).

    Article  Google Scholar 

  17. Ji, L. et al. Electrocatalytic CO2 reduction to alcohols with high selectivity over a two-dimensional Fe2P2S6 nanosheet. ACS Catal. 9, 9721–9725 (2019).

    Article  Google Scholar 

  18. Rosen, B. A. et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

    Article  Google Scholar 

  19. Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    Article  Google Scholar 

  20. Urushihara, M., Chan, K., Shi, C. & Nørskov, J. K. Theoretical study of EMIM+ adsorption on silver electrode surfaces. J. Phys. Chem. C 119, 20023–20029 (2015).

    Article  Google Scholar 

  21. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382 (2016).

    Article  Google Scholar 

  22. Asadi, M. et al. Nanostructured transition metal-dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016).

    Article  Google Scholar 

  23. Ren, W. et al. Confinement of ionic liquids at single-Ni-sites boost electroreduction of CO2 in aqueous electrolytes. ACS Catal. 10, 13171–13178 (2020).

    Article  Google Scholar 

  24. Yu, S. & Jain, P. K. Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nat. Commun. 10, 2022 (2019).

    Article  Google Scholar 

  25. Kondori, A. et al. Identifying catalytic active sites of trimolybdenum phosphide (Mo3P) for electrochemical hydrogen evolution. Adv. Energy Mater. 9, 1900516 (2019).

    Article  Google Scholar 

  26. Kim, C. et al. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat. Energy 6, 1026–1034 (2021).

    Article  Google Scholar 

  27. Esmaeilirad, M. et al. Efficient electrocatalytic conversion of CO2 to ethanol enabled by imidazolium-functionalized ionomer confined molybdenum phosphide. Appl. Catal. B 317, 121681 (2022).

    Article  Google Scholar 

  28. Asadi, M. et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 5, 4470 (2014).

    Article  Google Scholar 

  29. Valenti, M. et al. Suppressing H2 evolution and promoting selective CO2 electroreduction to CO at low overpotentials by alloying Au with Pd. ACS Catal. 9, 3527–3536 (2019).

    Article  Google Scholar 

  30. Junge Puring, K. et al. Electrochemical CO2 reduction: tailoring catalyst layers in gas diffusion electrodes. Adv. Sustain. Syst. 5, 2000088 (2021).

    Article  Google Scholar 

  31. Esmaeilirad, M. et al. Gold-like activity copper-like selectivity of heteroatomic transition metal carbides for electrocatalytic carbon dioxide reduction reaction. Nat. Commun. 12, 5067 (2021).

    Article  Google Scholar 

  32. Wexler, R. B., Qiu, T. & Rappe, A. M. Automatic prediction of surface phase diagrams using ab initio grand canonical Monte Carlo. J. Phys. Chem. C 123, 2321–2328 (2019).

    Article  Google Scholar 

  33. Bienen, F., Kopljar, D., Geiger, S., Wagner, N. & Friedrich, K. A. Investigation of CO2 electrolysis on tin foil by electrochemical impedance spectroscopy. ACS Sustain. Chem. Eng. 8, 5192–5199 (2020).

    Google Scholar 

  34. Zhan, C. et al. Revealing the CO coverage-driven C–C coupling mechanism for electrochemical CO2 reduction on Cu2O nanocubes via operando Raman spectroscopy. ACS Catal. 11, 7694–7701 (2021).

    Article  Google Scholar 

  35. Li, Y. C. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 141, 8584–8591 (2019).

    Article  Google Scholar 

  36. Zhong, D. et al. Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols. Angew. Chem. Int. Ed. 60, 4879–4885 (2021).

    Article  Google Scholar 

  37. Wang, Y. et al. Activation of CO2 by ionic liquid EMIM–BF4 in the electrochemical system: a theoretical study. Phys. Chem. Chem. Phys. 17, 23521–23531 (2015).

    Article  Google Scholar 

  38. Feng, J., Zeng, S., Feng, J., Dong, H. & Zhang, X. CO2 electroreduction in ionic liquids: a review. Chin. J. Chem. 36, 961–970 (2018).

    Article  Google Scholar 

  39. Sun, L., Ramesha, G. K., Kamat, P. V. & Brennecke, J. F. Switching the reaction course of electrochemical CO2 reduction with ionic liquids. Langmuir 30, 6302–6308 (2014).

    Article  Google Scholar 

  40. Lu, W. et al. Efficient photoelectrochemical reduction of carbon dioxide to formic acid: a functionalized ionic liquid as an absorbent and electrolyte. Angew. Chem. Int. Ed. 56, 11851–11854 (2017).

    Article  Google Scholar 

  41. Yang, Y., White, M. G. & Liu, P. Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu(111) surfaces. J. Phys. Chem. C. 116, 248–256 (2011).

    Article  Google Scholar 

  42. Guo, C., Wang, Z., Wang, D., Wang, H. F. & Hu, P. First-principles determination of CO adsorption and desorption on Pt(111) in the free energy landscape. J. Phys. Chem. C. 122, 21478–21483 (2018).

    Article  Google Scholar 

  43. Cheng, T., Xiao, H. & Goddard, W. A. Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free-energy calculations with explicit water. J. Am. Chem. Soc. 138, 13802–13805 (2016).

    Article  Google Scholar 

  44. Yang, H. et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 141, 12717–12723 (2019).

    Article  Google Scholar 

  45. Yang, J. et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem. Int. Ed. 57, 14095–14100 (2018).

    Article  Google Scholar 

  46. Li, M. et al. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 32, 2001848 (2020).

    Article  Google Scholar 

  47. Cheng, T., Xiao, H. & Goddard, W. A. I. I. I. Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu(100) surface, including multiple layers of explicit solvent at pH 0. J. Phys. Chem. Lett. 6, 4767–4773 (2015).

    Article  Google Scholar 

  48. Wang, Y.-R. et al. Implanting numerous hydrogen-bonding networks in a Cu-porphyrin-based nanosheet to boost CH4 selectivity in neutral-media CO2 electroreduction. Angew. Chem. Int. Ed. 60, 21952–21958 (2021).

    Article  Google Scholar 

  49. Cheng, T., Xiao, H. & Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

    Article  Google Scholar 

  50. Luo, W., Nie, X., Janik, M. J. & Asthagiri, A. Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 6, 219–229 (2016).

    Article  Google Scholar 

  51. Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013).

    Article  Google Scholar 

  52. Xiong, L. et al. Geometric modulation of local CO flux in Ag@Cu2O nanoreactors for steering the CO2RR pathway toward high-efficacy methane production. Adv. Mater. 33, 2101741 (2021).

    Article  Google Scholar 

  53. Amit, E. et al. Electrochemical deposition of N-heterocyclic carbene monolayers on metal surfaces. Nat. Commun. 11, 5714 (2020).

    Article  Google Scholar 

  54. Wu, C.-Y. et al. High-spatial-resolution mapping of catalytic reactions on single particles. Nature 541, 511–515 (2017).

    Article  Google Scholar 

  55. Kresse, G. & Furthmüller, J. Efficiency of ab initio total-energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  56. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  57. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  58. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  59. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  Google Scholar 

  60. Yang, S., He, J., Zhou, P. & Sun, L. Z. Magnetic control of single transition metal doped MoS2 through H/F chemical decoration. J. Magn. Magn. Mater. 422, 243–248 (2017).

    Article  Google Scholar 

  61. Lutfalla, S., Shapovalov, V. & Bell, A. T. Calibration of the DFT/GGA+U method for determination of reduction energies for transition and rare earth metal oxides of Ti, V, Mo, and Ce. J. Chem. Theory Comput. 7, 2218–2223 (2011).

    Article  Google Scholar 

  62. Straatsma, T. P., Berendsen, H. J. C. & Postma, J. P. M. Free energy of hydrophobic hydration: a molecular dynamics study of noble gases in water. J. Chem. Phys. 85, 6720–6727 (1986).

    Article  Google Scholar 

  63. Jiang, Z. & Rappe, A. M. Uncovering the electrolyte-dependent transport mechanism of LiO2 in lithium–oxygen batteries. J. Am. Chem. Soc. 144, 22150–22158 (2022).

    Article  Google Scholar 

  64. Jiang, Z. & Rappe, A. M. Structure, diffusion, and stability of lithium salts in aprotic dimethyl sulfoxide and acetonitrile electrolytes. J. Phys. Chem. C 126, 10266–10272 (2022).

    Article  Google Scholar 

  65. Jiang, Z. & Rappe, A. M. Mechanistic study of the Li–air battery with a Co3O4 cathode and dimethyl sulfoxide electrolyte. J. Phys. Chem. C 125, 21873–21881 (2021).

    Article  Google Scholar 

  66. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

M.A. acknowledges financial support from the National Science Foundation (NSF) Catalysis (CBET-2135173), Advanced Research Projects Agency-Energy OPEN2021 (DE-AR0001581) and SHV Energy. We acknowledge support from the Wanger Institute for Sustainable Energy Research (WISER) and Illinois Institute of Technology’s Armour College of Engineering. We also acknowledge the EPIC facility (NUANCE Center, Northwestern University), which has received support from the MRSEC programme (NSF DMR-1121262) at the Materials Research Center; the Nanoscale Science and Engineering Center (NSF EEC − 0647560) at the International Institute for Nanotechnology; and the State of Illinois, through the International Institute for Nanotechnology. Z.J. and A.M.R. acknowledge support from the Department of Energy, Office of Science, Office of Basic Energy Sciences, under grant number DE-SC0019281. R.S.-Y. acknowledges the financial support from the National Science Foundation award number DMR-1809439. Part of the microscopy experiments and M.T.S. efforts were supported from NSF award number DMR-2311104. This work utilized characterization facilities at the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-152205) at Northwestern University and the Electron Microscopy Service at Research Resources Center at the University of Illinois at Chicago.

Author information

Authors and Affiliations

Authors

Contributions

M.A. and M.E. conceived the idea of the work. M.E. synthesized the nanostructured materials. M.E., A.M.H. and A.K. performed electrochemical experiments and data analyses. M.E. did XRD and XPS characterizations. M.A. supervised the efforts of M.E., A.M.H. and A.K. M.T.S. and R.S.-Y. performed the TEM and ELNES characterizations. Z.J. performed the DFT calculations and theoretical analyses and designed numerical experiments. A.M.R. supervised Z.J. All authors discussed the results and assisted with paper preparation.

Corresponding author

Correspondence to Mohammad Asadi.

Ethics declarations

Competing interests

M.A., M.E. and A.K. filed a provisional patent application. The other authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Ali Seifitokaldani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–30, Figs. 1–43, Tables 1–3 and References.

Source data

Source Data Fig. 2

Raw Excel data.

Source Data Fig. 3

Raw Excel data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeilirad, M., Jiang, Z., Harzandi, A.M. et al. Imidazolium-functionalized Mo3P nanoparticles with an ionomer coating for electrocatalytic reduction of CO2 to propane. Nat Energy 8, 891–900 (2023). https://doi.org/10.1038/s41560-023-01314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01314-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing