Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries

Subjects

Abstract

Batteries based on redox chemistries that can store more energy than state-of-the-art lithium-ion systems will play an important role in enabling the energy transition to net zero carbon emissions. Lithium–sulfur (Li–S) batteries have shown extraordinary promise, where the electrically insulating sulfur must be loaded onto a conducting host. Here we report the use of pre-lithiated metallic 1T phase two-dimensional (2D) molybdenum disulfide (LixMoS2) as a sulfur host material for high-performance Li–S batteries under lean electrolyte conditions. The lithiation of conductive and lyophilic 1T phase MoS2 nanosheets leads to improved adsorption of lithium polysulfides, enhanced Li+ transport, accelerated electrochemical reaction kinetics and superior electrocatalytic activity for polysulfide conversion. These attributes enable pouch cell batteries to deliver energy density of 441 Wh kg−1 and 735 Wh l−1, together with capacity retention of 85.2% after 200 cycles. Our results provide insights into the design of practical Li–S cathodes based on electrocatalytically active and conducting 2D materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphologies and properties of LixMoS2.
Fig. 2: Electrochemical characterization of different MoS2-based cathodes in Li–S coin cells.
Fig. 3: LiPS adsorption, Li+ transport and electrochemical reaction kinetics of different MoS2-based cathodes.
Fig. 4: Electrocatalytic sulfur reduction reaction study of different MoS2 hosts in Li2S4 solution using rotating disk electrode system.
Fig. 5: Performance of LixMoS2-based Li–S pouch cells.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and Supplementary Information files. Source data are provided with this paper.

References

  1. Manthiram, A., Fu, Y., Chung, S. H., Zu, C. & Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).

    Article  Google Scholar 

  2. Liang, J., Sun, Z. H., Li, F. & Cheng, H. M. Carbon materials for Li–S batteries: functional evolution and performance improvement. Energy Storage Mater. 2, 76–106 (2016).

    Article  Google Scholar 

  3. Bhargav, A., He, J., Gupta, A. & Manthiram, A. Lithium–sulfur batteries: attaining the critical metrics. Joule 4, 285–291 (2020).

    Article  Google Scholar 

  4. Liu, Y. T., Liu, S., Li, G. R. & Gao, X. P. Strategy of enhancing the volumetric energy density for lithium–sulfur batteries. Adv. Mater. 33, 2003955 (2021).

    Article  Google Scholar 

  5. Zhao, C. et al. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021).

    Article  Google Scholar 

  6. Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    Article  Google Scholar 

  7. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    Article  Google Scholar 

  8. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  9. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).

    Article  Google Scholar 

  10. Acerce, M., Akdoan, E. K. & Chhowalla, M. Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature 549, 370–373 (2017).

    Article  Google Scholar 

  11. Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

    Article  Google Scholar 

  12. Voiry, D. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003–1009 (2016).

    Article  Google Scholar 

  13. Huang, X., Zeng, Z. & Zhang, H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42, 1934–1946 (2013).

    Article  Google Scholar 

  14. Huang, X. et al. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013).

    Article  Google Scholar 

  15. Xue, W. et al. Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019).

    Article  Google Scholar 

  16. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2001).

  17. Ogihara, N. et al. Theoretical and experimental analysis of porous electrodes for lithium-ion batteries by electrochemical impedance spectroscopy using a symmetric cell. J. Electrochem. Soc. 159, A1034–A1039 (2012).

    Article  Google Scholar 

  18. Lu, Y. C., He, Q. & Gasteiger, H. A. Probing the lithium-sulfur redox reactions: a rotating-ring disk electrode study. J. Phys. Chem. C. 118, 5733–5741 (2014).

    Article  Google Scholar 

  19. Liang, X. et al. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015).

    Article  Google Scholar 

  20. Bediako, D. K. et al. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 558, 425–429 (2018).

    Article  Google Scholar 

  21. Mao, Y. et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nat. Commun. 8, 14628 (2017).

    Article  Google Scholar 

  22. Duffner, F. et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134 (2021).

    Article  Google Scholar 

  23. Chen, J. et al. Improving lithium–sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels. Nano Lett. 17, 3061–3067 (2017).

    Article  Google Scholar 

  24. Pang, Q., Liang, X., Kwok, C. Y., Kulisch, J. & Nazar, L. F. A comprehensive approach toward stable lithium–sulfur batteries with high volumetric energy density. Adv. Energy Mater. 7, 1601630 (2017).

    Article  Google Scholar 

  25. Sun, Y., Kong, L., Abbas Khan, H. & Pecht, M. G. Li-ion battery reliability—a case study of the Apple iPhone®. IEEE Access 7, 71131–71141 (2019).

    Article  Google Scholar 

  26. Yuan, Z. et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 24, 6105–6112 (2014).

    Article  Google Scholar 

  27. Qie, L., Zu, C. & Manthiram, A. A high energy lithium–sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism. Adv. Energy Mater. 6, 1502459 (2016).

    Article  Google Scholar 

  28. Liu, J. et al. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li–S battery. Energy Environ. Sci. 10, 750–755 (2017).

    Article  Google Scholar 

  29. Lv, D. et al. High energy density lithium–sulfur batteries: challenges of thick sulfur cathodes. Adv. Energy Mater. 5, 1402290 (2015).

    Article  Google Scholar 

  30. Li, Z., Zhang, J. T., Chen, Y. M., Li, J. & Lou, X. W. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat. Commun. 6, 8850 (2015).

    Article  Google Scholar 

  31. Chung, S. H., Chang, C. H. & Manthiram, A. Robust, ultra-tough flexible cathodes for high-energy Li–S batteries. Small 12, 939–950 (2016).

    Article  Google Scholar 

  32. Li, L. et al. A foldable lithium–sulfur battery. ACS Nano 9, 11342–11350 (2015).

    Article  Google Scholar 

  33. Jin, K. et al. Sulfur/carbon nanotube composite film as a flexible cathode for lithium–sulfur batteries. J. Phys. Chem. C. 117, 21112–21119 (2013).

    Article  Google Scholar 

  34. Zhou, G., Zhao, Y. & Manthiram, A. Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li–S batteries. Adv. Energy Mater. 5, 1402263 (2015).

    Article  Google Scholar 

  35. Huang, J. Q. et al. Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium–sulfur batteries. J. Mater. Chem. A 2, 10869–10875 (2014).

    Article  Google Scholar 

  36. Zhou, G., Zhao, Y., Zu, C. & Manthiram, A. Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 12, 240–249 (2015).

    Article  Google Scholar 

  37. Zhou, W., Guo, B., Gao, H. & Goodenough, J. B. Low-cost higher loading of a sulfur cathode. Adv. Energy Mater. 6, 1502059 (2016).

    Article  Google Scholar 

  38. Kang, H. S. & Sun, Y. K. Freestanding bilayer carbon-sulfur cathode with function of entrapping polysulfide for high performance Li–S batteries. Adv. Funct. Mater. 26, 1225–1232 (2016).

    Article  Google Scholar 

  39. Chen, H. et al. Rational design of cathode structure for high rate performance lithium–sulfur batteries. Nano Lett. 15, 5443–5448 (2015).

    Article  Google Scholar 

  40. Kim, J. S., Hwang, T. H., Kim, B. G., Min, J. & Choi, J. W. A lithium–sulfur battery with a high areal energy density. Adv. Funct. Mater. 24, 5359–5367 (2014).

    Article  Google Scholar 

  41. Park, J. et al. Unusually high ion conductivity in large-scale patternable two-dimensional MoS2 film. ACS Nano 15, 12267–12275 (2021).

    Article  Google Scholar 

  42. Cheng, X. B. et al. The gap between long lifespan Li–S coin and pouch cells: the importance of lithium metal anode protection. Energy Storage Mater. 6, 18–25 (2017).

    Article  Google Scholar 

  43. Luo, L., Chung, S. H., Yaghoobnejad Asl, H. & Manthiram, A. Long-life lithium–sulfur batteries with a bifunctional cathode substrate configured with boron carbide nanowires. Adv. Mater. 30, 1804149 (2018).

    Article  Google Scholar 

  44. Luo, L., Li, J., Yaghoobnejad Asl, H. & Manthiram, A. In-situ assembled VS4 as a polysulfide mediator for high-loading lithium–sulfur batteries. ACS Energy Lett. 5, 1177–1185 (2020).

    Article  Google Scholar 

  45. Zhang, G. et al. The radical pathway based on a lithium-metal-compatible high-dielectric dlectrolyte for lithium–sulfur batteries. Angew. Chem. Int. Ed. 57, 16732–16736 (2018).

    Article  Google Scholar 

  46. Xie, Y. et al. Semi-flooded sulfur cathode with ultralean absorbed electrolyte in Li–S battery. Adv. Sci. 7, 1903168 (2020).

    Article  Google Scholar 

  47. He, J., Chen, Y. & Manthiram, A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ. Sci. 11, 2560–2568 (2018).

    Article  Google Scholar 

  48. Kim, M. S. et al. Facile and scalable fabrication of high-energy-density sulfur cathodes for pragmatic lithium–sulfur batteries. J. Power Sources 422, 104–112 (2019).

    Article  Google Scholar 

  49. Sun, H. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017).

    Article  Google Scholar 

  50. Moshtev, R. & Johnson, B. State of the art of commercial Li ion batteries. J. Power Sources 91, 86–91 (2000).

    Article  Google Scholar 

  51. Cui, L. F., Yang, Y., Hsu, C. M. & Yi, C. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9, 3370–3374 (2009).

    Article  Google Scholar 

  52. Li, Y. et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016).

    Article  Google Scholar 

  53. Wang, X., Yan, C., Yan, J., Sumboja, A. & Lee, P. S. Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device. Nano Energy 11, 765–772 (2015).

    Article  Google Scholar 

  54. Billaud, J., Bouville, F., Magrini, T., Villevieille, C. & Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 1, 16097 (2016).

    Article  Google Scholar 

  55. Wang, W. et al. Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium–sulfur batteries. Energy Storage Mater. 18, 414–422 (2019).

    Article  Google Scholar 

  56. Shi, L. et al. Reaction heterogeneity in practical high-energy lithium–sulfur pouch cells. Energy Environ. Sci. 13, 3620–3632 (2020).

    Article  Google Scholar 

  57. Wu, F. et al. Sulfur nanodots stitched in 2D ‘bubble-like’ interconnected carbon fabric as reversibility-enhanced cathodes for lithium–sulfur batteries. ACS Nano 11, 4694–4702 (2017).

    Article  Google Scholar 

  58. Shaibani, M. et al. Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium–sulfur batteries. Sci. Adv. 6, eaay2757 (2020).

    Article  Google Scholar 

  59. Peng, Y. Q. et al. Full-range redox mediation on sulfur redox kinetics for high-performance lithium–sulfur batteries. Batteries Supercaps 5, e202100359 (2022).

    Article  Google Scholar 

  60. Li, X.-Y. et al. Regulating lithium salt to inhibit surface gelation on an electrocatalyst for high-energy-density lithium–sulfur batteries. J. Am. Chem. Soc. 144, 14638–14646 (2022).

    Article  Google Scholar 

  61. Zhao, C. X. et al. Semi-immobilized molecular electrocatalysts for high-performance lithium–sulfur batteries. J. Am. Chem. Soc. 143, 19865–19872 (2021).

    Article  Google Scholar 

  62. Ye, Y. et al. Toward practical high-energy batteries: a modular-assembled oval-like carbon microstructure for thick sulfur electrodes. Adv. Mater. 29, 1700598 (2017).

    Article  Google Scholar 

  63. Cheng, Q. et al. Constructing a 700 Wh kg−1-level rechargeable lithium–sulfur pouch cell. J. Energy Chem. 76, 181–186 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Faraday Institution LiSTAR programme and characterization project (EP/S003053/1, FIRG014 and FIRG012) and the Engineering and Physical Sciences Research Council (EPSRC) (EP/T001038/1, EP/L016087/1).

Author information

Authors and Affiliations

Authors

Contributions

M.C. conceived and designed the research; Z.L., I.S., J.Y. and J.L. performed the experiments and the characterization of the materials; Z.L. and M.C. analysed the data and M.C. wrote the manuscript with input from Z.L. All the authors commented on the manuscript.

Corresponding authors

Correspondence to Jieun Yang or Manish Chhowalla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Wonbong Choi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Tables 1 and 2.

Source data

Fig. 3

Statistical source data for Fig. 3f.

Fig. 5

Statistical source data for Fig. 5a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Sami, I., Yang, J. et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat Energy 8, 84–93 (2023). https://doi.org/10.1038/s41560-022-01175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01175-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing