Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Visible-light-driven non-oxidative dehydrogenation of alkanes at ambient conditions

Abstract

Direct non-oxidative dehydrogenation of alkanes produces useful carbon feedstocks and hydrogen fuel. However, breaking the C–H bonds in alkanes typically requires high temperature, stoichiometric oxidants or high-energy ultraviolet light; processes that operate under milder conditions are attractive but tend to have poor efficiency. Here we report Pt/black TiO2 photocatalysts in which Pt species are close to each other but not directly bonded, exhibiting high performance for alkane dehydrogenation in visible to near-infrared light at room temperature. For cyclohexane dehydrogenation, the turnover number for H2 production exceeded 100,000 without any deactivation over 80 reaction cycles, far beyond thermal reactions. For methane, 8.2% conversion was achieved with 65% selectivity to propane, rather than the more common ethane. We propose that methane undergoes intramolecular dehydrogenation to produce a methylene intermediate. For C2+ alkanes, fast dehydrogenation (up to 1,440 µmol g−1 h−1) to the corresponding olefins was realized. Distinct from isolated Pt+ monomers, the collections of Pt+ monomers give better photocatalytic activity and selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Preparation and characterization of catalyst.
Fig. 2: Photocatalytic dehydrogenation of cyclohexane.
Fig. 3: Kinetic and stability test.
Fig. 4: Photocatalytic dehydrogenation of methane and light alkanes.
Fig. 5: Difference between Pt+ and Pt2+.
Fig. 6: Illustration for the dehydrogenation of different alkanes.

Data availability

All data supporting the findings of this study are available within the paper and Supplementary Information files. Atomic coordinates of the computational studies are provided as Supplementary Data 1. Source data are provided with this paper.

References

  1. Bergman, R. G. C–H activation. Nature 446, 391–393 (2007).

    Article  Google Scholar 

  2. Choudhary, V. R., Kinage, A. K. & Choudhary, T. V. Low-temperature nonoxidative activation of methane over H-galloaluminosilicate (MFI) zeolite. Science 275, 1286–1288 (1997).

    Article  Google Scholar 

  3. Chen, H., Schlecht, S., Semple, T. C. & Hartwig, J. F. Thermal, catalytic, regiospecific functionalization of alkanes. Science 287, 1995–1997 (2000).

    Article  Google Scholar 

  4. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    Article  Google Scholar 

  5. Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014).

    Article  Google Scholar 

  6. Schwach, P., Pan, X. & Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 117, 8497–8520 (2017).

    Article  Google Scholar 

  7. Yuliati, L. & Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 37, 1592–1602 (2008).

    Article  Google Scholar 

  8. Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    Article  Google Scholar 

  9. Preuster, P., Papp, C. & Wasserscheid, P. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc. Chem. Res. 50, 74–85 (2017).

    Article  Google Scholar 

  10. Choudhary, T. V., Aksoylu, E. & Wayne Goodman, D. Nonoxidative activation of methane. Catal. Rev. 45, 151–203 (2003).

    Article  Google Scholar 

  11. Lytken, O., Lew, W. & Campbell, C. T. Catalytic reaction energetics by single crystal adsorption calorimetry: hydrocarbons on Pt(111). Chem. Soc. Rev. 37, 2172–2179 (2008).

    Article  Google Scholar 

  12. Esswein, A. J. & Nocera, D. G. Hydrogen production by molecular photocatalysis. Chem. Rev. 107, 4022–4047 (2007).

    Article  Google Scholar 

  13. Kato, Y., Yoshida, H. & Hattori, T. Photoinduced non-oxidative coupling of methane over silica-alumina and alumina around room temperature. Chem. Commun. 21, 2389–2390 (1998).

    Article  Google Scholar 

  14. Yoshida, H., Matsushita, N., Kato, Y. & Hattori, T. Synergistic active sites on SiO2–Al2O3–TiO2 photocatalysts for direct methane coupling. J. Phys. Chem. B 107, 8355–8362 (2003).

    Article  Google Scholar 

  15. Li, L. et al. Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem. Int. Ed. 50, 8299–8303 (2011).

    Article  Google Scholar 

  16. Chowdhury, A. D. et al. Towards a practical development of light-driven acceptorless alkane dehydrogenation. Angew. Chem. Int. Ed. 53, 6477–6481 (2014).

    Article  Google Scholar 

  17. Meng, L. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ. Sci. 11, 294–298 (2018).

    Article  Google Scholar 

  18. Wu, S. et al. Ga-doped and Pt-loaded porous TiO2–SiO2 for photocatalytic nonoxidative coupling of methane. J. Am. Chem. Soc. 141, 6592–6600 (2019).

    Article  Google Scholar 

  19. Song, H., Meng, X., Wang, Z.-J., Liu, H. & Ye, J. Solar-energy-mediated methane conversion. Joule 3, 1606–1636 (2019).

    Article  Google Scholar 

  20. Samantaray, M. K. et al. The comparison between single atom catalysis and surface organometallic catalysis. Chem. Rev. 120, 734–813 (2019).

    Article  Google Scholar 

  21. Sun, G. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 9, 4454 (2018).

    Article  Google Scholar 

  22. Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).

    Article  Google Scholar 

  23. Naldoni, A. et al. Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production. ACS Catal. 9, 345–364 (2019).

    Article  Google Scholar 

  24. Wang, Z. et al. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Funct. Mater. 23, 5444–5450 (2013).

    Article  Google Scholar 

  25. Chen, Y. et al. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018).

    Article  Google Scholar 

  26. Jeong, H. et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 3, 368–375 (2020).

    Article  Google Scholar 

  27. Koel, B. E., Blank, D. A. & Carter, E. A. Thermochemistry of the selective dehydrogenation of cyclohexane to benzene on Pt surfaces. J. Mol. Catal. A 131, 39–53 (1998).

    Article  Google Scholar 

  28. Li, L., Fan, S., Mu, X., Mi, Z. & Li, C.-J. Photoinduced conversion of methane into benzene over GaN nanowires. J. Am. Chem. Soc. 136, 7793–7796 (2014).

    Article  Google Scholar 

  29. Kariya, N. et al. Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt catalysts. Appl. Catal. A 247, 247–259 (2003).

    Article  Google Scholar 

  30. Lee, M.-H., Nagaraja, B. M., Lee, K. Y. & Jung, K.-D. Dehydrogenation of alkane to light olefin over PtSn/θ–Al2O3 catalyst: effects of Sn loading. Catal. Today 232, 53–62 (2014).

    Article  Google Scholar 

  31. Marcinkowski, M. D. et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 10, 325–332 (2018).

    Article  Google Scholar 

  32. Li, L., Mu, X.-Y., Liu, W., Mi, Z. & Li, C.-J. Simple and efficient system for combined solar energy harvesting and reversible hydrogen storage. J. Am. Chem. Soc. 137, 7576–7579 (2015).

    Article  Google Scholar 

  33. Caballero, A. et al. Silver-catalyzed C–C bond formation between methane and ethyl diazoacetate in supercritical CO2. Science 332, 835–838 (2011).

    Article  Google Scholar 

  34. Tan, H. et al. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 6, 10216–10223 (2014).

    Article  Google Scholar 

  35. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  37. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  38. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  39. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  Google Scholar 

  40. Yang, K., Dai, Y., Huang, B. & Feng, Y. P. Density-functional characterization of antiferromagnetism in oxygen-deficient anatase and rutile TiO2. Phys. Rev. B 81, 033202 (2010).

    Article  Google Scholar 

  41. Arroyo-de Dompablo, M., Morales-Garcia, A. & Taravillo, M. DFT+U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs. J. Chem. Phys. 135, 054503 (2011).

    Article  Google Scholar 

  42. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  Google Scholar 

  43. Hu, Z. & Metiu, H. Choice of U for DFT+U calculations for titanium oxides. J. Phys. Chem. C. 115, 5841–5845 (2011).

    Article  Google Scholar 

  44. Gautam, G. S. & Carter, E. A. Evaluating transition metal oxides within DFT-SCAN and SCAN+U frameworks for solar thermochemical applications. Phys. Rev. Mater. 2, 095401 (2018).

    Article  Google Scholar 

  45. Yu, X. et al. First principles calculations of electronic and optical properties of Mo-doped rutile TiO2. J. Alloys Compd 507, 33–37 (2010).

    Article  Google Scholar 

  46. Zhang, Z. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017).

    Article  Google Scholar 

  47. Ren, Y. et al. Unraveling the coordination structure–performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 10, 4500 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant number 92061105, 21875090), Natural Science Foundation of Jilin Province (20210101121JC, 20210509035RQ) and the Fundamental Research Funds for the Central Universities. The XAFS experiments were conducted in 1W1B beam line of Beijing Synchrotron Radiation Facility. We thank Y. Zhao at Beijing University of Chemical Technology for help with XAFS experiments.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. performed the catalyst design, synthesis, characterization, methane and cyclohexane conversion tests and data analysis. L. Liu. participated in the catalyst preparation and C2+ alkane tests. Z.G. and G.W. participated in the characterization. X.M. and K.H. provided helpful discussion. Z.P., R.Z., F.B. and Z.C. performed the DFT calculations. Y.W. and W.Z. performed the AC-HAADF-STEM measurements. L. Li. designed the study, analysed the data and wrote the paper.

Corresponding author

Correspondence to Lu Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Jier Huang, Ding Ma, Hisao Yoshida and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Figs. 1–44, Tables 1–8 and refs. 1–11.

Supplementary Data

Atomic coordinates for the Pt–Cl doping and Pt–O doping slabs.

Source data

Source Data Fig. 2

Data for Fig. 2a and statistical source data for Fig. 2bd.

Source Data Fig. 3

Data for Fig. 3.

Source Data Fig. 4

Data for Fig. 4.

Source Data Fig. 5

Data for Fig. 5.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, L., Pan, Z. et al. Visible-light-driven non-oxidative dehydrogenation of alkanes at ambient conditions. Nat Energy 7, 1042–1051 (2022). https://doi.org/10.1038/s41560-022-01127-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01127-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing