Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes


As Li-ion battery costs decrease, energy density and thus driving range remains a roadblock for mass-market vehicle electrification. While Li-metal anodes help achieve Department of Energy targets of 500 Wh kg−1 (750 Wh l−1), Li Coulombic efficiencies fall below the 99.95+% required for 1,000+ cycles. Here we examine historical electrolyte developments underlying increased Coulombic efficiency and discuss emerging frameworks that support rational strategies to move beyond 99.9%. While multiple electrolytes reach 98–99% Coulombic efficiency over subsets of cycles, achieving >99.9% Coulombic efficiency consistently throughout cycling is an as yet unmet challenge. We analyse important interplays between electrolyte, solid electrolyte interphase composition, plating–stripping kinetics and Li morphology, many of which are only recently being quantified experimentally at the Li interface, and which collectively determine Coulombic efficiency. We also discuss forward-looking strategies that, if mastered, represent new opportunities to refine understanding and support new record values of Coulombic efficiency in the coming years.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Historical electrolyte strategies towards Li-metal reversibility.
Fig. 2: CE of select electrolyte systems.
Fig. 3: Quantifying morphology and composition of electrochemically inactive Li.
Fig. 4: Interplay between Li+ transport and redox kinetics.


  1. 1.

    Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

    Article  Google Scholar 

  2. 2.

    USDrive Electrochemical Energy Storage Technical Team Roadmap USDrive (September 2017)

  3. 3.

    Xiao, J. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

  4. 4.

    Gauthier, M. et al. Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015).

    Article  Google Scholar 

  5. 5.

    Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979). Proposes the solid electrolyte interphase (SEI) model, the most notable model for the Li–electrolyte interface.

    Article  Google Scholar 

  6. 6.

    Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). Comprehensive review of decades of research on aprotic electrolytes for Li and Li-ion batteries.

    Article  Google Scholar 

  7. 7.

    Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  Google Scholar 

  8. 8.

    Fong, R., von Sacken, U. & Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1990).

    Article  Google Scholar 

  9. 9.

    Harris, W. S. Electrochemical Studies in Cyclic Esters. PhD thesis, Univ. of California, Berkeley (1958). First experimental demonstration of reversible Li plating and stripping.

  10. 10.

    Selim, R. & Bro, P. Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J. Electrochem. Soc. 121, 1457–1457 (1974).

    Article  Google Scholar 

  11. 11.

    Rauh, R. D. & Brummer, S. B. The effect of additives on lithium cycling in propylene carbonate. Electrochim. Acta 22, 75–83 (1977).

    Article  Google Scholar 

  12. 12.

    Heiskanen, S. K., Kim, J. & Lucht, B. L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 3, 2322–2333 (2019).

    Article  Google Scholar 

  13. 13.

    Koch, V. R. & Young, J. H. The stability of the secondary lithium electrode in tetrahydrofuran‐based electrolytes. J. Electrochem. Soc. 125, 1371–1377 (1978).

    Article  Google Scholar 

  14. 14.

    Koch, V. R. Reactions of tetrahydrofuran and lithium hexafluoroarsenate with lithium. J. Electrochem. Soc. 126, 181–187 (1979).

    Article  Google Scholar 

  15. 15.

    Goldman, J. L., Mank, R. M., Young, J. H. & Koch, V. R. Structure–reactivity relationships of methylated tetrahydrofurans with lithium. J. Electrochem. Soc. 127, 1461–1467 (1980).

    Article  Google Scholar 

  16. 16.

    Koch, V. R. Specular lithium deposits from lithium hexafluoroarsenate/diethyl ether electrolytes. J. Electrochem. Soc. 129, 1 (1982).

    Article  Google Scholar 

  17. 17.

    Koch, V. R. & Young, J. H. 2-Methyltetrahydrofuran–lithium hexafluoroarsenate: a superior electrolyte for the secondary lithium electrode. Science 204, 499–501 (1979).

    Article  Google Scholar 

  18. 18.

    Foos, J. S. & Stolki, T. J. A new ether solvent for lithium cells. J. Electrochem. Soc. 135, 2769–2771 (1988).

    Article  Google Scholar 

  19. 19.

    Malik, Y., Aurbach, D., Dan, P. & Meitav, A. The electrochemical behaviour of 2-methyltetrahydrofuran solutions. J. Electroanal. Chem. 282, 73–105 (1990).

    Article  Google Scholar 

  20. 20.

    Gofer, Y., Ben-Zion, M. & Aurbach, D. Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries. J. Power Sources 39, 163–178 (1992).

    Article  Google Scholar 

  21. 21.

    Wang, C., Meng, Y. S. & Xu, K. Perspective—fluorinating interphases. J. Electrochem. Soc. 166, A5184–A5186 (2018).

    Article  Google Scholar 

  22. 22.

    Ding, F. et al. Effects of carbonate solvents and lithium salts on morphology and Coulombic efficiency of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013).

    Article  Google Scholar 

  23. 23.

    Miao, R. et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 271, 291–297 (2014). First report of 99% Li Coulombic efficiency, introducing multisalt electrolytes and their synergistic interactions.

    Article  Google Scholar 

  24. 24.

    Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  Google Scholar 

  25. 25.

    Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Article  Google Scholar 

  26. 26.

    Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article  Google Scholar 

  27. 27.

    Zeng, Z. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 3, 674–681 (2018).

    Article  Google Scholar 

  28. 28.

    Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).

    Article  Google Scholar 

  29. 29.

    Perez Beltran, S., Cao, X., Zhang, J.-G. & Balbuena, P. B. Localized high concentration electrolytes for high voltage lithium-metal batteries: correlation between the electrolyte composition and its reductive/oxidative stability. Chem. Mater. 32, 5973–5984 (2020).

    Article  Google Scholar 

  30. 30.

    Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018). Hypothesizes that high Li Coulombic efficiency can be achieved in electrolytes with high amounts of donatable fluorine.

    Article  Google Scholar 

  31. 31.

    Qiu, F. et al. A concentrated ternary‐salts electrolyte for high reversible Li metal battery with slight excess Li. Adv. Energy Mater. 9, 1803372 (2019).

    Article  Google Scholar 

  32. 32.

    Chen, S. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2, 1548–1558 (2018).

    Article  Google Scholar 

  33. 33.

    Chen, S. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).

    Article  Google Scholar 

  34. 34.

    Rustomji, C. S. et al. Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, eaal4263 (2017).

    Article  Google Scholar 

  35. 35.

    Yang, Y. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 3, 1986–2000 (2019). Highest Li Coulombic efficiency achieved to date (99.9% averaged over cycles 100–500).

    Article  Google Scholar 

  36. 36.

    Yang, Y. et al. Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy Environ. Sci. 13, 2209–2219 (2020).

    Article  Google Scholar 

  37. 37.

    Fan, X. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).

    Article  Google Scholar 

  38. 38.

    Peled, E., Golodnitsky, D. & Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208–L210 (1997).

    Article  Google Scholar 

  39. 39.

    Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019). First precise quantification of the contribution of inactive Li0 to capacity loss.

    Article  Google Scholar 

  40. 40.

    Lee, J. Z. et al. Cryogenic focused ion beam characterization of lithium metal anodes. ACS Energy Lett. 4, 489–493 (2019).

    Article  Google Scholar 

  41. 41.

    Nagpure, S. C. et al. Impacts of lean electrolyte on cycle life for rechargeable Li metal batteries. J. Power Sources 407, 53–62 (2018).

    Article  Google Scholar 

  42. 42.

    Lu, D. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015).

    Article  Google Scholar 

  43. 43.

    Louli, A. J., Ellis, L. D. & Dahn, J. R. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance. Joule 3, 745–761 (2019).

    Article  Google Scholar 

  44. 44.

    Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article  Google Scholar 

  45. 45.

    Hsieh, Y.-C. et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy. Cell Rep. Phys. Sci. 1, 100139 (2020).

    Article  Google Scholar 

  46. 46.

    Gunnarsdóttir, A. B., Amanchukwu, C. V., Menkin, S. & Grey, C. P. Noninvasive in situ NMR study of ‘dead lithium’ formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc. 142, 20814–20827 (2020).

    Article  Google Scholar 

  47. 47.

    Popov, K. I., Djokić, S. S., Nikolić, N. D. & Jović, V. D. Morphology of Electrochemically and Chemically Deposited Metals (Springer, 2016).

  48. 48.

    Barton, J. L. & Bockris, J. O’M. The electrolytic growth of dendrites from ionic solutions. Proc. R. Soc. A 268, 485–505 (1962).

    Google Scholar 

  49. 49.

    Cohen, Y. S., Cohen, Y. & Aurbach, D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. J. Phys. Chem. B 104, 12282–12291 (2000).

    Article  Google Scholar 

  50. 50.

    Boyle, D. T. et al. Transient voltammetry with ultramicroelectrodes reveals the electron transfer kinetics of lithium metal anodes. ACS Energy Lett. 5, 701–709 (2020). Quantification of Li plating and stripping kinetics in several aprotic electrolytes.

    Article  Google Scholar 

  51. 51.

    Liu, S. et al. Lithium dendrite formation in Li/poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide/Li cells. J. Electrochem. Soc. 157, A1092 (2010).

    Article  Google Scholar 

  52. 52.

    Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B. & Tarascon, J. M. Lithium metal stripping/plating mechanisms studies: a metallurgical approach. Electrochem. Commun. 8, 1639–1649 (2006).

    Article  Google Scholar 

  53. 53.

    Rosso, M., Gobron, T., Brissot, C., Chazalviel, J. N. & Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 97, 804–806 (2001).

    Article  Google Scholar 

  54. 54.

    Sand, H. J. S. III On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Philos. Mag. 1, 45–79 (1901).

    MATH  Article  Google Scholar 

  55. 55.

    Mayers, M. Z., Kaminski, J. W. & Miller, T. F. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J. Phys. Chem. C 116, 26214–26221 (2012).

    Article  Google Scholar 

  56. 56.

    Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005).

    Article  Google Scholar 

  57. 57.

    Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    Article  Google Scholar 

  58. 58.

    Maslyn, J. A. et al. Preferential stripping of a lithium protrusion resulting in recovery of a planar electrode. J. Electrochem. Soc. 167, 100553 (2020).

    Article  Google Scholar 

  59. 59.

    Arakawa, M., Tobishima, S.-i, Nemoto, Y., Ichimura, M. & Yamaki, J.-i. Lithium electrode cycleability and morphology dependence on current density. J. Power Sources 43, 27–35 (1993).

    Article  Google Scholar 

  60. 60.

    Liang, Z. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl Acad. Sci. USA 113, 2862 (2016).

    Article  Google Scholar 

  61. 61.

    Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016).

    Article  Google Scholar 

  62. 62.

    Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).

    Article  Google Scholar 

  63. 63.

    Louli, A. J. et al. Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. J. Electrochem. Soc. 166, A1291–A1299 (2019).

    Article  Google Scholar 

  64. 64.

    Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy (2021).

  65. 65.

    Lopez, J. et al. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 140, 11735–11744 (2018).

    Article  Google Scholar 

  66. 66.

    Yu, Z. et al. A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule 3, 2761–2776 (2019).

    Article  Google Scholar 

  67. 67.

    Stalin, S. et al. Designing polymeric interphases for stable lithium metal deposition. Nano Lett. 20, 5749–5758 (2020).

    Article  Google Scholar 

  68. 68.

    Guo, R. & Gallant, B. M. Li2O solid electrolyte interphase: probing transport properties at the chemical potential of lithium. Chem. Mater. 32, 5525–5533 (2020).

    Article  Google Scholar 

  69. 69.

    Benitez, L. & Seminario, J. M. Ion diffusivity through the solid electrolyte interphase in lithium-ion batteries. J. Electrochem. Soc. 164, E3159–E3170 (2017).

    Article  Google Scholar 

  70. 70.

    Lowe, J. S. & Siegel, D. J. Modeling the interface between lithium metal and its native oxide. ACS Appl. Mater. Interfaces 12, 46015–46026 (2020).

    Article  Google Scholar 

  71. 71.

    Su, C.-C. et al. Solvation rule for solid-electrolyte interphase enabler in lithium-metal batteries. Angew. Chem. Int. Ed. 59, 18229–18233 (2020).

    Article  Google Scholar 

  72. 72.

    Liu, Y. et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal. Adv. Sci. 8, 2003301 (2021).

    Article  Google Scholar 

  73. 73.

    Tao, R. et al. Kinetics tuning the electrochemistry of lithium dendrites formation in lithium batteries through electrolytes. ACS Appl. Mater. Interfaces 9, 7003–7008 (2017).

    Article  Google Scholar 

  74. 74.

    Shi, F. et al. Strong texturing of lithium metal in batteries. Proc. Natl Acad. Sci. USA 114, 12138 (2017).

    Article  Google Scholar 

  75. 75.

    He, M., Guo, R., Hobold, G. M., Gao, H. & Gallant, B. M. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proc. Natl Acad. Sci. USA 117, 73–79 (2020).

    Article  Google Scholar 

  76. 76.

    Zhang, Q. et al. Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett. 16, 2011–2016 (2016).

    Article  Google Scholar 

  77. 77.

    Aurbach, D., Ein-Ely, Y. & Zaban, A. The surface chemistry of lithium electrodes in alkyl carbonate solutions. J. Electrochem. Soc. 141, L1 (1994).

    Article  Google Scholar 

  78. 78.

    Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article  Google Scholar 

  79. 79.

    Xue, W. et al. FSI-inspired solvent and ‘full fluorosulfonyl’ electrolyte for 4 V class lithium-metal batteries. Energy Environ. Sci. 13, 212–220 (2020).

    Article  Google Scholar 

  80. 80.

    Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).

    Article  Google Scholar 

  81. 81.

    Zhu, Y. et al. Design principles for self-forming interfaces enabling stable lithium-metal anodes. Proc. Natl Acad. Sci. USA 117, 27195 (2020).

    Article  Google Scholar 

  82. 82.

    Li, Y. et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2, 2167–2177 (2018).

    Article  Google Scholar 

  83. 83.

    Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506 (2017).

    Article  Google Scholar 

  84. 84.

    Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    Article  Google Scholar 

  85. 85.

    Huang, W., Wang, H., Boyle, D. T., Li, Y. & Cui, Y. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy. ACS Energy Lett. 5, 1128–1135 (2020).

    Article  Google Scholar 

  86. 86.

    Michan, A. L. et al. Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation. Chem. Mater. 28, 8149–8159 (2016).

    Article  Google Scholar 

  87. 87.

    Hobold, G. M., Khurram, A. & Gallant, B. M. Operando gas monitoring of solid electrolyte interphase reactions on lithium. Chem. Mater. 32, 2341–2352 (2020).

    Article  Google Scholar 

  88. 88.

    Zhang, Y. et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy. Energy Environ. Sci. 13, 183–199 (2020).

    Article  Google Scholar 

  89. 89.

    Wang, H. et al. Efficient lithium metal cycling over a wide range of pressures from an anion-derived solid-electrolyte interphase framework. ACS Energy Lett. 6, 816–825 (2021).

    Article  Google Scholar 

  90. 90.

    Niu, C. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).

    Article  Google Scholar 

  91. 91.

    Yang, H., Kwon, K., Devine, T. M. & Evans, J. W. Aluminum corrosion in lithium batteries an investigation using the electrochemical quartz crystal microbalance. J. Electrochem. Soc. 147, 4399 (2000).

    Article  Google Scholar 

  92. 92.

    Kim, K. et al. Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries. Electrochim. Acta 225, 358–368 (2017).

    Article  Google Scholar 

  93. 93.

    Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  Google Scholar 

  94. 94.

    Alvarado, J. et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 21, 341–353 (2018).

    Article  Google Scholar 

  95. 95.

    Ren, X. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4, 1877–1892 (2018).

    Article  Google Scholar 

  96. 96.

    Li, W., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).

    Article  Google Scholar 

  97. 97.

    Gao, H. & Gallant, B. M. Advances in the chemistry and applications of alkali-metal–gas batteries. Nat. Rev. Chem. 4, 566–583 (2020).

    Article  Google Scholar 

  98. 98.

    Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. & Su, Y.-S. Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).

    Article  Google Scholar 

  99. 99.

    Zhang, Y. & Viswanathan, V. Design rules for selecting fluorinated linear organic solvents for Li metal batteries. J. Phys. Chem. Lett. 12, 5821–5828 (2021).

    Article  Google Scholar 

  100. 100.

    Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018). Provides a description of modern Coulombic efficiency measurement protocols, including reservoir cycling, commonly used in recent studies.

    Article  Google Scholar 

  101. 101.

    Bond, T. M., Burns, J. C., Stevens, D. A., Dahn, H. M. & Dahn, J. R. Improving precision and accuracy in Coulombic efficiency measurements of Li-ion batteries. J. Electrochem. Soc. 160, A521–A527 (2013).

    Article  Google Scholar 

  102. 102.

    Ye, H. et al. Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy 36, 411–417 (2017).

    Article  Google Scholar 

  103. 103.

    Zheng, J. et al. Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li–S batteries. Nano Energy 50, 431–440 (2018).

    Article  Google Scholar 

  104. 104.

    Cao, X. et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  Google Scholar 

  105. 105.

    Genovese, M. et al. Combinatorial methods for improving lithium metal cycling efficiency. J. Electrochem. Soc. 165, A3000–A3013 (2018).

    Article  Google Scholar 

  106. 106.

    Aurbach, D., Youngman, O., Gofer, Y. & Meitav, A. The electrochemical behaviour of 1,3-dioxolane–LiClO4 solutions—I. Uncontaminated solutions. Electrochim. Acta 35, 625–638 (1990).

    Article  Google Scholar 

  107. 107.

    Jurng, S., Brown, Z. L., Kim, J. & Lucht, B. L. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci. 11, 2600–2608 (2018).

    Article  Google Scholar 

  108. 108.

    Schedlbauer, T. et al. Lithium difluoro(oxalato)borate: a promising salt for lithium metal based secondary batteries? Electrochim. Acta 92, 102–107 (2013).

    Article  Google Scholar 

  109. 109.

    Fang, Z. et al. Novel concentrated Li[(FSO2)(n-C4F9SO2)N]-based ether electrolyte for superior stability of metallic lithium anode. ACS Appl. Mater. Interfaces 9, 4282–4289 (2017).

    Article  Google Scholar 

  110. 110.

    Rauh, R. D., Reise, T. F. & Brummer, S. B. Efficiencies of cycling lithium on a lithium substrate in propylene carbonate. J. Electrochem. Soc. 125, 186–190 (1978).

    Article  Google Scholar 

  111. 111.

    Aurbach, D. The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136, 3198–3198 (1989).

    Article  Google Scholar 

  112. 112.

    Aurbach, D. & Gofer, Y. The behavior of lithium electrodes in mixtures of alkyl carbonates and ethers. J. Electrochem. Soc. 138, 3529–3536 (1991).

    Article  Google Scholar 

  113. 113.

    Foos, J. S. & McVeigh, J. Lithium cycling in polymethoxymethane solvents. J. Electrochem. Soc. 130, 628–630 (1983).

    Article  Google Scholar 

  114. 114.

    Ota, H., Shima, K., Ue, M. & Yamaki, J.-i Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta 49, 565–572 (2004).

    Article  Google Scholar 

  115. 115.

    Markevich, E., Salitra, G., Chesneau, F., Schmidt, M. & Aurbach, D. Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett. 2, 1321–1326 (2017).

    Article  Google Scholar 

  116. 116.

    Liu, Y. et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018).

    Article  Google Scholar 

  117. 117.

    Zhang, X.-Q., Cheng, X.-B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    Article  Google Scholar 

  118. 118.

    Peng, Z. et al. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Adv. Funct. Mater. 30, 2001285 (2020).

    Article  Google Scholar 

  119. 119.

    Brown, Z. L., Jurng, S. & Lucht, B. L. Investigation of the lithium solid electrolyte interphase in vinylene carbonate electrolytes using Cu||LiFePO4 cells. J. Electrochem. Soc. 164, A2186–A2189 (2017).

    Article  Google Scholar 

  120. 120.

    Brown, Z. L., Jurng, S., Nguyen, C. C. & Lucht, B. L. Effect of fluoroethylene carbonate electrolytes on the nanostructure of the solid electrolyte interphase and performance of lithium metal anodes. ACS Appl. Energy Mater. 1, 3057–3062 (2018).

    Article  Google Scholar 

  121. 121.

    Alvarado, J. et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019).

    Article  Google Scholar 

  122. 122.

    Amanchukwu, C. V. et al. A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. J. Am. Chem. Soc. 142, 7393–7403 (2020).

    Article  Google Scholar 

  123. 123.

    Holoubek, J. et al. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Lett. 5, 1438–1447 (2020).

    Article  Google Scholar 

  124. 124.

    Aurbach, D., Markovsky, B., Shechter, A., Ein‐Eli, Y. & Cohen, H. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate–dimethyl carbonate mixtures. J. Electrochem. Soc. 143, 3809–3820 (1996).

    Article  Google Scholar 

  125. 125.

    Gottwald, T. & Vondrak, J. Conductivity of lithium perchlorate salt dissolved in different types of solvent. In Proc. 23rd Conference STUDENT EEICT 522– 526 (2017).

  126. 126.

    Nilsson, V., Kotronia, A., Lacey, M., Edström, K. & Johansson, P. Highly concentrated LiTFSI–EC electrolytes for lithium metal batteries. ACS Appl. Energy Mater. 3, 200–207 (2020).

    Article  Google Scholar 

  127. 127.

    Dahbi, M., Ghamouss, F., Tran-Van, F., Lemordant, D. & Anouti, M. Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. J. Power Sources 196, 9743–9750 (2011).

    Article  Google Scholar 

  128. 128.

    Xia, L. et al. Fluorinated electrolytes for Li-ion batteries: the lithium difluoro(oxalato)borate additive for stabilizing the solid electrolyte interphase. ACS Omega 2, 8741–8750 (2017).

    Article  Google Scholar 

  129. 129.

    Frenck, L., Sethi, G. K., Maslyn, J. A. & Balsara, N. P. Factors that control the formation of dendrites and other morphologies on lithium metal anodes. Front. Energy Res. 7, 115 (2019).

    Article  Google Scholar 

  130. 130.

    Beyene, T. T. et al. Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free Li-metal batteries. J. Electrochem. Soc. 166, A1501–A1509 (2019).

    Article  Google Scholar 

  131. 131.

    Abouimrane, A., Ding, J. & Davidson, I. J. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: aluminum corrosion studies and lithium ion battery investigations. J. Power Sources 189, 693–696 (2009).

    Article  Google Scholar 

  132. 132.

    Zhang, C. et al. Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. J. Phys. Chem. B 118, 5144–5153 (2014).

    Article  Google Scholar 

Download references


G.M.H., R.G. and B.M.G. acknowledge support from the National Science Foundation under award number 1804247. J.L. acknowledges support by an appointment to the Intelligence Community Postdoctoral Research Fellowship Program at the Massachusetts Institute of Technology, administered by Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the Office of the Director of National Intelligence. Y.S.-H. and N.M. acknowledge the financial support of the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office, under the Advanced Battery Materials Research (BMR) Program, of the US Department of Energy under contract no. DE-AC02-06CH11357, subcontract no. 9F-60231. A.B. and Y.S.M. acknowledge the Zable Endowed Chair fund for energy technologies for efforts related to this work.

Author information



Corresponding authors

Correspondence to Y. Shirley Meng, Yang Shao-Horn or Betar M. Gallant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Shuhong Jiao, Yuki Yamada and Ji-Guang Zhang for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Data 1

Complete electrolyte and cycle conditions underlying referenced data points in Figs. 1, 2, and 4 in the main text.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hobold, G.M., Lopez, J., Guo, R. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat Energy 6, 951–960 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing