Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Greenhouse-inspired supra-photothermal CO2 catalysis

Abstract

Converting carbon dioxide photocatalytically into fuels using solar energy is an attractive route to move away from a reliance on fossil fuels. Photothermal CO2 catalysis is one approach to achieve this, but improved materials that can more efficiently harvest and use solar energy are needed. Here, we report a supra-photothermal catalyst architecture—inspired by the greenhouse effect—that boosts the performance of a catalyst for CO2 hydrogenation compared to traditional photothermal catalyst designs. The catalyst consists of a nanoporous-silica-encapsulated nickel nanocrystal (Ni@p-SiO2), which is active for methanation and reverse water–gas shift reactions. Under illumination, the local temperatures achieved by Ni@p-SiO2 exceed those of Ni-based catalysts without the SiO2 shell. We suggest that the heat insulation and infrared shielding effects of the SiO2 sheath confine the photothermal energy of the nickel core, enabling a supra-photothermal effect. Catalyst sintering and coking is also lessened in Ni@p-SiO2, which may be due to spatial confinement effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of Ni@p-SiO2-30.
Fig. 2: Enhanced photothermal effect.
Fig. 3: Greenhouse-like effect.
Fig. 4: Thermal stability.
Fig. 5: Photothermal catalytic performance.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and Supplementary Information files. Source data are provided with this paper.

References

  1. Rao, H., Schmidt, L. C., Bonin, J. & Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548, 74–77 (2017).

    Article  Google Scholar 

  2. Inoue, T., Fujishima, A., Konishi, S. & Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277, 637–638 (1979).

    Article  Google Scholar 

  3. Wan, L. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2, 889–898 (2019).

    Article  Google Scholar 

  4. Qian, C. et al. Catalytic CO2 reduction by palladium-decorated silicon–hydride nanosheets. Nat. Catal. 2, 46–54 (2019).

    Article  Google Scholar 

  5. Zhou, L. et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 5, 61–70 (2020).

    Article  Google Scholar 

  6. Robatjazi, H. et al. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 8, 27 (2017).

    Article  Google Scholar 

  7. Ghoussoub, M., Xia, M., Duchesne, P. N., Segal, D. & Ozin, G. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 12, 1122–1142 (2019).

    Article  Google Scholar 

  8. Xiao, J.-D. & Jiang, H.-L. Metal–organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 52, 356–366 (2019).

    Article  Google Scholar 

  9. Jia, J. et al. Photothermal catalyst engineering: hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 4, 1700252 (2017).

    Article  Google Scholar 

  10. Liu, L. et al. Sunlight-assisted hydrogenation of CO2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites. Appl. Catal. B Environ. 235, 186–196 (2018).

    Article  Google Scholar 

  11. Wang, X., Wang, F., Sang, Y. & Liu, H. Full-spectrum solar-light-activated photocatalysts for light-chemical energy conversion. Adv. Energy Mater. 7, 1700473 (2017).

    Article  Google Scholar 

  12. Ning, S. et al. Microstructure induced thermodynamic and kinetic modulation to enhance CO2 photothermal reduction: a case of atomic-scale dispersed Co–N species anchored Co@C hybrid. ACS Catal. 10, 4726–4736 (2020).

    Article  Google Scholar 

  13. Yang, M. Q., Gao, M., Hong, M. & Ho, G. W. Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv. Mater. 30, 1802894 (2018).

    Article  Google Scholar 

  14. Meng, X. et al. Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. Int. Ed. 53, 11478–11482 (2014).

    Article  Google Scholar 

  15. Sastre, F., Puga, A. V., Liu, L., Corma, A. & García, H. Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J. Am. Chem. Soc. 136, 6798–6801 (2014).

    Article  Google Scholar 

  16. Chen, G. et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 30, 1704663 (2018).

    Article  Google Scholar 

  17. Hoch, L. B. et al. Nanostructured indium oxide coated silicon nanowire arrays: a hybrid photothermal/photochemical approach to solar fuels. ACS Nano 10, 9017–9025 (2016).

    Article  Google Scholar 

  18. Yu, F. et al. Enhanced solar photothermal catalysis over solution plasma activated TiO2. Adv. Sci. 7, 2000204 (2020).

    Article  Google Scholar 

  19. Mateo, D., Albero, J. & García, H. Titanium-perovskite-supported RuO2 nanoparticles for photocatalytic CO2 methanation. Joule 3, 1949–1962 (2019).

    Article  Google Scholar 

  20. Wang, L. et al. Black indium oxide a photothermal CO2 hydrogenation catalyst. Nat. Commun. 11, 2432 (2020).

    Article  Google Scholar 

  21. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2016).

    Article  Google Scholar 

  22. Kumar, B. et al. Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 63, 541–569 (2012).

    Article  Google Scholar 

  23. Gust, D., Moore, T. A. & Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009).

    Article  Google Scholar 

  24. Zhang, S. et al. A general and mild route to highly dispersible anisotropic magnetic colloids for sensing weak magnetic fields. J. Mater. Chem. C 6, 5528 (2018).

    Article  Google Scholar 

  25. Ozin, G. A. Throwing new light on the reduction of CO2. Adv. Mater. 27, 1957–1963 (2015).

    Article  Google Scholar 

  26. Gao, W. et al. Photo-driven syngas conversion to lower olefins over oxygen-decorated Fe5C2 catalyst. Chem 4, 2917–2928 (2018).

    Article  Google Scholar 

  27. Mao, C. et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light. Chem 5, 2702–2717 (2019).

    Article  Google Scholar 

  28. Chen, Y. Z. et al. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: the roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 139, 2035–2044 (2017).

    Article  Google Scholar 

  29. O’Brien, P. G. et al. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Adv. Sci. 1, 1400001 (2014).

    Article  Google Scholar 

  30. Kho, E. T. et al. A review on photo-thermal catalytic conversion of carbon dioxide. Green. Energy Environ. 2, 204–217 (2017).

    Article  Google Scholar 

  31. Li, K. et al. Balancing near-field enhancement, absorption, and scattering for effective antenna–reactor plasmonic photocatalysis. Nano Lett. 17, 3710–3717 (2017).

    Article  Google Scholar 

  32. Hogan, N. J. et al. Nanoparticles heat through light localization. Nano Lett. 14, 4640–4645 (2014).

    Article  Google Scholar 

  33. Baffou, G. et al. Photoinduced heating of nanoparticle arrays. ACS Nano 7, 6478–6488 (2013).

    Article  Google Scholar 

  34. Richardson, H. H., Carlson, M. T., Tandler, P. J., Hernandez, P. & Govorov, A. O. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 9, 1139–1146 (2009).

    Article  Google Scholar 

  35. Feng, K. et al. Cobalt plasmonic superstructures enable almost 100% broadband photon efficient CO2 photocatalysis. Adv. Mater. 32, 2000014 (2020).

    Article  Google Scholar 

  36. Zhou, S. et al. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 31, 1900509 (2019).

    Article  Google Scholar 

  37. Song, H., Meng, X., Wang, Z.-j, Liu, H. & Ye, J. Solar-energy-mediated methane conversion. Joule 3, 1606–1636 (2019).

    Article  Google Scholar 

  38. Li, Z. et al. Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets. Nano Energy 60, 467–475 (2019).

    Article  Google Scholar 

  39. Li, Y. et al. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 10, 2359 (2019).

    Article  Google Scholar 

  40. Zhou, Y. et al. Photothermal catalysis over nonplasmonic Pt/TiO2 studied by operando HERFD-XANES, resonant XES, and DRIFTS. ACS Catal. 8, 11398–11406 (2018).

    Article  Google Scholar 

  41. Li, Z. et al. Co-based catalysts derived from layered-double-hydroxide nanosheets for the photothermal production of light olefins. Adv. Mater. 30, 1800527 (2018).

    Article  Google Scholar 

  42. Han, X., Song, L., Xu, H. & Ouyang, S. Light-driven low-temperature syngas production from CH3OH and H2O over a Pt@SrTiO3 photothermal catalyst. Catal. Sci. Technol. 8, 2515–2518 (2018).

    Article  Google Scholar 

  43. Ren, J. et al. Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system. Adv. Energy Mater. 7, 1601657 (2016).

    Article  Google Scholar 

  44. Li, X., Zhang, X., Everitt, H. O. & Liu, J. Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett. 19, 1706–1711 (2019).

    Article  Google Scholar 

  45. Joo, S. H. et al. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat. Mater. 8, 126–131 (2009).

    Article  Google Scholar 

  46. Park, J. N. et al. Highly active and sinter-resistant Pd-nanoparticle catalysts encapsulated in silica. Small 4, 1694–1697 (2008).

    Article  Google Scholar 

  47. Wu, Z. et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano 15, 5696–5705 (2021).

    Article  Google Scholar 

  48. Dong, C. et al. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 9, 1252 (2018).

    Article  Google Scholar 

  49. Huang, H. et al. Solar-light-driven CO2 reduction by CH4 on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability. Adv. Energy Mater. 8, 1702472 (2018).

    Article  Google Scholar 

  50. Liu, H. et al. Light assisted CO2 reduction with methane over SiO2 encapsulated Ni nanocatalysts for boosted activity and stability. J. Mater. Chem. A 5, 10567–10573 (2017).

    Article  Google Scholar 

  51. Zhu, L., Gao, M., Peh, C. K. N. & Ho, G. W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 5, 323–343 (2018).

    Article  Google Scholar 

  52. Yu, S., Wilson, A. J., Kumari, G., Zhang, X. & Jain, P. K. Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett. 2, 2058–2070 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (51920105005, 51802208, 21902113, 51821002, 91833303), the Natural Science Foundation of Jiangsu Province (BK20200101), 111 project and the Collaborative Innovation Centre of Suzhou Nano Science & Technology. G.A.O. is grateful to the Natural Sciences and Engineering Council of Canada for support of this work.

Author information

Authors and Affiliations

Authors

Contributions

L.H., G.A.O. and X.Z. conceived the idea and supervised the project. M.C., Z.W., W.S. and W.L. carried out the preparation of materials. M.P., S.W., L.W., K.F. and A.S.H. contributed to the characterizations. M.C., Z.W., Z.L. and L.W. performed the catalytic testing. M.C., A.T. and C.L. contributed to the calculation of the Tlocal of catalysts. All authors discussed the results and co-wrote the manuscript.

Corresponding authors

Correspondence to Le He, Geoffrey A. Ozin or Xiaohong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Hermenegildo Garcia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–34, Tables 1–3, Notes 1–2 and references.

Source data

Source Data Fig. 1

Statistic source data.

Source Data Fig. 5

Statistic source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, M., Wu, Z., Li, Z. et al. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat Energy 6, 807–814 (2021). https://doi.org/10.1038/s41560-021-00867-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-021-00867-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing