Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure

Abstract

Lithium-ion batteries are currently the most advanced electrochemical energy storage technology due to a favourable balance of performance and cost properties. Driven by forecasted growth of the electric vehicles market, the cell production capacity for this technology is continuously being scaled up. However, the demand for better performance, particularly higher energy densities and/or lower costs, has triggered research into post-lithium-ion technologies such as solid-state lithium metal, lithium–sulfur and lithium–air batteries as well as post-lithium technologies such as sodium-ion batteries. Currently, these technologies are being intensively studied with regard to material chemistry and cell design. In this Review, we expand on the current knowledge in this field. Starting with a market outlook and an analysis of technological differences, we discuss the manufacturing processes of these technologies. For each technology, we describe anode production, cathode production, cell assembly and conditioning. We then evaluate the manufacturing compatibility of each technology with the lithium-ion production infrastructure and discuss the implications for processing costs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Practical technology-specific volumetric and gravimetric energy densities and development of the rechargeable battery market size over time.
Fig. 2: Schematic electrode stack design for LIBs, SIBs, LSBs, SSBs and LABs, with associated active materials and areal capacity ranges typically used.
Fig. 3: Battery cell production chain for selected battery technologies.
Fig. 4: Prospective concepts for solvent-free electrode production.
Fig. 5: Concepts for lithium metal anode production.

References

  1. 1.

    Placke, T., Kloepsch, R., Dühnen, S. & Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electrochem. 21, 1939–1964 (2017). Comprehensively reviews the history of battery technologies and offers perspectives of lithium-ion and post-lithium-ion batteries.

    Article  Google Scholar 

  2. 2.

    Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    Article  Google Scholar 

  3. 3.

    Duffner, F., Wentker, M., Greenwood, M. & Leker, J. Battery cost modeling: a review and directions for future research. Renew. Sustain. Energy Rev. 127, 109872 (2020). An in-depth analysis of the battery cost modelling literature based on various characteristics and identifying a trend towards state-of-the-art cell costs between US$100 kWh−1 and US$150 kWh−1.

    Article  Google Scholar 

  4. 4.

    Pillot, C. The Rechargeable Battery Market and Main Trends 2017–2030 (Avicenne Energy, 2019).

  5. 5.

    Vaalma, C., Buchholz, D., Weil, M. & Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018). An in-depth overview of SIBs, analysing the material and production properties and quantifying their implications for costs and cell performance.

    Article  Google Scholar 

  6. 6.

    Nanda, S., Gupta, A. & Manthiram, A. Anode-free full cells: a pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. https://doi.org/10.1002/aenm.202000804 (2020).

  7. 7.

    Gallagher, K. G. et al. Quantifying the promise of lithium–air batteries for electric vehicles. Energy Environ. Sci. 7, 1555–1563 (2014).

  8. 8.

    Hagen, M. et al. Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5, 1401986 (2015).

  9. 9.

    Mineral Commodity Summaries (US Department of the Interior, US Geological Survey, 2018).

  10. 10.

    Schnell, J. et al. All-solid-state lithium-ion and lithium metal batteries—paving the way to large-scale production. J. Power Sources 382, 160–175 (2018).

    Article  Google Scholar 

  11. 11.

    Randau, S. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020). In-depth benchmarking analysis of all-solid-state battery performance data reported in the literature in various configurations.

    Article  Google Scholar 

  12. 12.

    Park, J. O. et al. A 1,000 Wh kg−1 Li–air battery: cell design and performance. J. Power Sources 419, 112–118 (2019).

    Article  Google Scholar 

  13. 13.

    Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Materials for automotive batteries: perspective on performance and cost of lithium-based rechargeable batteries. Nat. Energy 3, 267–278 (2018). Review of current and future materials for automotive batteries with regard to their production as well as performance and cost.

  14. 14.

    Arinicheva, Y. et al. in Advanced Ceramics for Energy Conversion and Storage (ed. Guillon, O.) 549–709 (Elsevier, 2020).

  15. 15.

    Andre, D., Hain, H., Lamp, P., Maglia, F. & Stiaszny, B. Future high-energy density anode materials from an automotive application perspective. J. Mater. Chem. A 5, 17174–17198 (2017).

    Article  Google Scholar 

  16. 16.

    Myung, S. T. et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett. 2, 196–223 (2017).

    Article  Google Scholar 

  17. 17.

    Scrosati, B., Garche, J. & Tillmetz, W. Advances in Battery Technologies for Electric Vehicles (Elsevier, 2015).

  18. 18.

    Blomgren, G. E. The development and future of lithium ion batteries. J. Electrochem. Soc. 164, A5019–A5025 (2017).

    Article  Google Scholar 

  19. 19.

    Lee, H., Yanilmaz, M., Toprakci, O., Fu, K. & Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7, 3857–3886 (2014).

    Article  Google Scholar 

  20. 20.

    Nayak, P. K., Yang, L., Brehm, W. & Adelhelm, P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. 57, 102–120 (2018).

    Article  Google Scholar 

  21. 21.

    Adelhelm, P. et al. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J. Nanotechnol. 6, 1016–1055 (2015).

    Article  Google Scholar 

  22. 22.

    Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 1–11 (2016).

    Article  Google Scholar 

  23. 23.

    Betz, J. et al. Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9, 1803170 (2019).

    Article  Google Scholar 

  24. 24.

    Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 1–4 (2016).

    Article  Google Scholar 

  25. 25.

    Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    Article  Google Scholar 

  26. 26.

    Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    Article  Google Scholar 

  27. 27.

    Takada, K. Progress in solid electrolytes toward realizing solid-state lithium batteries. J. Power Sources 394, 74–85 (2018).

    Article  Google Scholar 

  28. 28.

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). Provides a comprehensive technological overview of LSBs and LABs and presents the main challenges to overcome to use these technologies in mass applications.

    Article  Google Scholar 

  29. 29.

    Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1 16013 (2016).

  30. 30.

    Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. & Iba, H. Rechargeable Li–air batteries with carbonate-based liquid electrolytes. Electrochemistry 78, 403–405 (2010).

    Article  Google Scholar 

  31. 31.

    Liu, Q.-C. et al. A flexible and wearable lithium–oxygen battery with record energy density achieved by the interlaced architecture inspired by bamboo slips. Adv. Mater. 28, 8413–8418 (2016).

    Article  Google Scholar 

  32. 32.

    Asadi, M. et al. A lithium–oxygen battery with a long cycle life in an air-like atmosphere. Nature 555, 502–506 (2018).

    Article  Google Scholar 

  33. 33.

    Kwade, A. et al. Current status and challenges for automotive battery production technologies. Nat. Energy 3, 290–300 (2018). Offers an in-depth description of lithium-ion production steps, focusing on technical properties, production costs, scale-up issues and future process innovations.

    Article  Google Scholar 

  34. 34.

    Turetskyy, A. et al. Toward data‐driven applications in lithium‐ion battery cell manufacturing. Energy Technol. 8, 1900136 (2020).

    Article  Google Scholar 

  35. 35.

    Dreger, H., Bockholt, H., Haselrieder, W. & Kwade, A. Discontinuous and continuous processing of low-solvent battery slurries for lithium nickel cobalt manganese oxide electrodes. J. Electron. Mater. 44, 4434–4443 (2015).

    Article  Google Scholar 

  36. 36.

    Efficient Battery Electrode Slurry Production (Bühler Group, 2017).

  37. 37.

    Zhang, Z., Zeng, T., Lai, Y., Jia, M. & Li, J. A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries. J. Power Sources 247, 1–8 (2014).

    Article  Google Scholar 

  38. 38.

    Rollag, K., Juarez-Robles, D., Du, Z., Wood, D. L. & Mukherjee, P. P. Drying temperature and capillarity-driven crack formation in aqueous processing of Li-ion battery electrodes. ACS Appl. Energy Mater. 2, 4464–4476 (2019).

    Article  Google Scholar 

  39. 39.

    Hawley, W. B. & Li, J. Electrode manufacturing for lithium-ion batteries—analysis of current and next generation processing. J. Energy Storage 25, 100862 (2019).

    Article  Google Scholar 

  40. 40.

    Flynn, J. C. & Marsh, C. Development and experimental results of continuous coating technology for lithium-ion electrodes. In Proc. 13th Annual Battery Conference on Applications and Advances (eds Frank, H. A. & Seo, E. T.) 81–84 (IEEE, 1998).

  41. 41.

    Song, Z. et al. Origami lithium-ion batteries. Nat. Commun. 5, 3140 (2014).

    Article  Google Scholar 

  42. 42.

    Schmitt, M., Scharfer, P. & Schabel, W. Slot die coating of lithium-ion battery electrodes: investigations on edge effect issues for stripe and pattern coatings. J. Coat. Technol. Res. 11, 57–63 (2014).

    Article  Google Scholar 

  43. 43.

    Carvalho, M. S. & Kheshgi, H. S. Low-flow limit in slot coating: theory and experiments. AIChE J. 46, 1907–1917 (2000).

    Article  Google Scholar 

  44. 44.

    Romero, O. J., Suszynski, W. J., Scriven, L. E. & Carvalho, M. S. Low-flow limit in slot coating of dilute solutions of high molecular weight polymer. J. Nonnewton. Fluid Mech. 118, 137–156 (2004).

    Article  Google Scholar 

  45. 45.

    Jaiser, S., Friske, A., Baunach, M., Scharfer, P. & Schabel, W. Development of a three-stage drying profile based on characteristic drying stages for lithium-ion battery anodes. Dry. Technol. 35, 1266–1275 (2017).

    Article  Google Scholar 

  46. 46.

    Jiang, Z., Zhao, F., Guan, Y. & Qiu, Z. Research on vacuum drying process and internal heat conduction of Li-ion battery core. Theor. Appl. Mech. Lett. 9, 120–129 (2019).

    Article  Google Scholar 

  47. 47.

    Meyer, C., Bockholt, H., Haselrieder, W. & Kwade, A. Characterization of the calendering process for compaction of electrodes for lithium-ion batteries. J. Mater. Process. Technol. 249, 172–178 (2017).

    Article  Google Scholar 

  48. 48.

    Takeda, O. et al. Electrowinning of lithium from LiOH in molten chloride. J. Electrochem. Soc. 161, D820–D823 (2014).

    Article  Google Scholar 

  49. 49.

    Meyer, H. C. Jr in Handling and Uses of the Alkali Metals Vol. 19, Ch. 2 (ACS, 1957).

  50. 50.

    Wietelmann, U. Surface-passivated lithium metal and method for the production thereof. US patent 13,515,579 (2012).

  51. 51.

    Schnell, J. et al. Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. Energy Environ. Sci. 12, 1818–1833 (2019). Evaluates and identifies production technologies for oxidic SSBs, focusing on the ceramic processing technologies required to produce SEs and composite cathodes.

    Article  Google Scholar 

  52. 52.

    Lee, H., Song, J., Kim, Y.-J., Park, J.-K. & Kim, H.-T. Structural modulation of lithium metal–electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries. Sci. Rep. 6, 30830 (2016).

    Article  Google Scholar 

  53. 53.

    Fu, J. et al. In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte. Energy Environ. Sci. 12, 1404–1412 (2019).

    Article  Google Scholar 

  54. 54.

    Tsai, C.-L. et al. High conductivity of mixed phase Al-substituted Li7La3Zr2O12. J. Electroceram. 35, 25–32 (2015).

    Article  Google Scholar 

  55. 55.

    Jin, S. et al. Solid–solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 142, 8818–8826 (2020).

    Article  Google Scholar 

  56. 56.

    Qian, J. et al. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016).

    Article  Google Scholar 

  57. 57.

    Teragawa, S., Aso, K., Tadanaga, K., Hayashi, A. & Tatsumisago, M. Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries. J. Mater. Chem. A 2, 5095–5099 (2014).

  58. 58.

    Kotobuki, M., Munakata, H., Kanamura, K., Sato, Y. & Yoshida, T. Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. J. Electrochem. Soc. 157, A1076 (2010).

    Article  Google Scholar 

  59. 59.

    Ahmed, S., Nelson, P. A. & Dees, D. W. Study of a dry room in a battery manufacturing plant using a process model. J. Power Sources 326, 490–497 (2016).

    Article  Google Scholar 

  60. 60.

    Jung, Y. S., Oh, D. Y., Nam, Y. J. & Park, K. H. Issues and challenges for bulk-type all-solid-state rechargeable lithium batteries using sulfide solid electrolytes. Isr. J. Chem. 55, 472–485 (2015).

    Article  Google Scholar 

  61. 61.

    Sahu, G. et al. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4 SnS4. Energy Environ. Sci. 7, 1053–1058 (2014).

    Article  Google Scholar 

  62. 62.

    Muramatsu, H., Hayashi, A., Ohtomo, T., Hama, S. & Tatsumisago, M. Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion. 182, 116–119 (2011).

    Article  Google Scholar 

  63. 63.

    Li, Y., Han, J.-T., Wang, C.-A., Xie, H. & Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012).

  64. 64.

    Miara, L. et al. About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature. ACS Appl. Mater. Interfaces 8, 26842–26850 (2016).

    Article  Google Scholar 

  65. 65.

    Xia, W. et al. Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO2. J. Am. Ceram. Soc. 100, 2832–2839 (2017).

    Article  Google Scholar 

  66. 66.

    Hanft, D., Exner, J. & Moos, R. Thick-films of garnet-type lithium ion conductor prepared by the Aerosol Deposition Method: the role of morphology and annealing treatment on the ionic conductivity. J. Power Sources 361, 61–69 (2017).

    Article  Google Scholar 

  67. 67.

    Schnell, J., Knörzer, H., Imbsweiler, A. J. & Reinhart, G. Solid versus liquid—a bottom‐up calculation model to analyze the manufacturing cost of future high‐energy batteries. Energy Technol. 8, 1901237 (2020).

    Article  Google Scholar 

  68. 68.

    Ma, Z. et al. A review of cathode materials and structures for rechargeable lithium–air batteries. Energy Environ. Sci. 8, 2144–2198 (2015).

    Article  Google Scholar 

  69. 69.

    McCloskey, B. D. et al. Limitations in rechargeability of Li–O2 batteries and possible origins. J. Phys. Chem. Lett. 3, 3043–3047 (2012).

    Article  Google Scholar 

  70. 70.

    Padbury, R. & Zhang, X. Lithium–oxygen batteries—limiting factors that affect performance. J. Power Sources 196, 4436–4444 (2011).

    Article  Google Scholar 

  71. 71.

    Ludwig, B., Zheng, Z., Shou, W., Wang, Y. & Pan, H. Solvent-free manufacturing of electrodes for lithium-ion batteries. Sci. Rep. 6, 23150 (2016). Presents a method for solvent-free electrode production using electrostatic spraying and hot rolling as a basis for materials dispensing and binder activation.

    Article  Google Scholar 

  72. 72.

    Al-Shroofy, M. et al. Solvent-free dry powder coating process for low-cost manufacturing of LiNi1/3Mn1/3Co1/3O2 cathodes in lithium-ion batteries. J. Power Sources 352, 187–193 (2017).

    Article  Google Scholar 

  73. 73.

    Park, D.-W., Cañas, N. A., Wagner, N. & Friedrich, K. A. Novel solvent-free direct coating process for battery electrodes and their electrochemical performance. J. Power Sources 306, 758–763 (2016).

    Article  Google Scholar 

  74. 74.

    Bailey, A. G. The science and technology of electrostatic powder spraying, transport and coating. J. Electrostat. 45, 85–120 (1998).

    Article  Google Scholar 

  75. 75.

    Yan, B., Liu, J., Song, B., Xiao, P. & Lu, L. Li-rich thin film cathode prepared by pulsed laser deposition. Sci. Rep. 3, 3332 (2013).

    Article  Google Scholar 

  76. 76.

    Baggetto, L., Unocic, R. R., Dudney, N. J. & Veith, G. M. Fabrication and characterization of Li–Mn–Ni–O sputtered thin film high voltage cathodes for Li-ion batteries. J. Power Sources 211, 108–118 (2012).

    Article  Google Scholar 

  77. 77.

    Koike, S. & Tatsumi, K. Preparation and performances of highly porous layered LiCoO2 films for lithium batteries. J. Power Sources 174, 976–980 (2007).

    Article  Google Scholar 

  78. 78.

    Reinhart, G. et al. in Future Trends in Production Engineering (eds Schuh, G. et al.) 3–12 (Springer, 2013).

  79. 79.

    Schilling, A., Schmitt, J., Dietrich, F. & Dröder, K. Analyzing bending stresses on lithium-ion battery cathodes induced by the assembly process. Energy Technol. 4, 1502–1508 (2016).

    Article  Google Scholar 

  80. 80.

    Zhang, S. S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 164, 351–364 (2007).

    Article  Google Scholar 

  81. 81.

    Baumeister, M. & Fleischer, J. Integrated cut and place module for high productive manufacturing of lithium-ion cells. CIRP Ann. 63, 5–8 (2014).

    Article  Google Scholar 

  82. 82.

    Lee, S. S., Kim, T. H., Hu, S. J., Cai, W. W. & Abell, J. A. Joining technologies for automotive lithium-ion battery manufacturing: a review. In Proc. ASME International Manufacturing Science and Engineering Conference Vol. 1, 541–549 (ASMEDC, 2010).

  83. 83.

    Günter, F. J. et al. Influence of the cell format on the electrolyte filling process of lithium‐ion cells. Energy Technol. 8, 1801108 (2019).

  84. 84.

    Günter, F. J., Burgstaller, C., Konwitschny, F. & Reinhart, G. Influence of the electrolyte quantity on lithium-ion cells. J. Electrochem. Soc. 166, A1709–A1714 (2019).

    Article  Google Scholar 

  85. 85.

    Lamination and Stacking of Cells (Manz, 2019).

  86. 86.

    Sakti, A., Michalek, J. J., Fuchs, E. R. H. & Whitacre, J. F. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. J. Power Sources 273, 966–980 (2015).

    Article  Google Scholar 

  87. 87.

    Devine, J. in ASM Handbook: Welding, Brazing, and Soldering Vol. 6 (eds Olson, D. L. et al.) 324–327 (1993).

  88. 88.

    McGrogan, F. P. et al. Compliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 7, 1602011 (2017).

    Article  Google Scholar 

  89. 89.

    Hao, F., Han, F., Liang, Y., Wang, C. & Yao, Y. Architectural design and fabrication approaches for solid-state batteries. MRS Bull. 43, 775–781 (2018).

    Article  Google Scholar 

  90. 90.

    An, S. J. et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016).

    Article  Google Scholar 

  91. 91.

    Wood, D. L., Li, J. & Daniel, C. Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 275, 234–242 (2015).

    Article  Google Scholar 

  92. 92.

    Arora, P., White, R. E. & Doyle, M. Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 145, 3647–3667 (1998).

  93. 93.

    Bieker, G., Winter, M. & Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 17, 8670–8679 (2015).

    Article  Google Scholar 

  94. 94.

    Cheng, X.-B. et al. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016).

    Article  Google Scholar 

  95. 95.

    Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).

  96. 96.

    Mao, C. et al. Balancing formation time and electrochemical performance of high energy lithium-ion batteries. J. Power Sources 402, 107–115 (2018).

    Article  Google Scholar 

  97. 97.

    An, S. J., Li, J., Du, Z., Daniel, C. & Wood, D. L. Fast formation cycling for lithium ion batteries. J. Power Sources 342, 846–852 (2017).

    Article  Google Scholar 

  98. 98.

    Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  Google Scholar 

  99. 99.

    Tagawa, K. & Brodd, R. J. in Lithium-Ion Batteries (eds Yoshio M. et al.) 181–194 (Springer, 2009).

  100. 100.

    Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

    Article  Google Scholar 

  101. 101.

    London Metal Exchange (LME, accessed 30 January 2020); https://www.lme.com/

  102. 102.

    Duffner, F., Mauler, L., Wentker, M., Leker, J. & Winter, M. Large-scale automotive battery cell manufacturing: analyzing strategic and operational effects on manufacturing costs. Intern. J. Prod. Econ. 232, 107982 (2021). Forecast of large-scale lithium-ion battery manufacturing costs based on more than 250 parameters relating to technical parameters, product characteristics, operating conditions and factor prices.

    Article  Google Scholar 

  103. 103.

    Cano, Z. P. et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018).

    Article  Google Scholar 

  104. 104.

    Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  Google Scholar 

  105. 105.

    Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

  106. 106.

    Lee, H. C. et al. High-energy-density Li–O2 battery at cell scale with folded cell structure. Joule 3, 542–556 (2019).

    Article  Google Scholar 

  107. 107.

    Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1, 1–11 (2016).

    Article  Google Scholar 

  108. 108.

    Moores, S. Dawn of the Battery Megafactories and the Impact on Industrial Minerals (Benchmark Mineral Intelligence, 2019).

  109. 109.

    Schünemann, J. H. Modell zur Bewertung der Herstellkosten von Lithiumionenbatteriezellen. PhD thesis, Technische Univ. Braunschweig (2015).

Download references

Acknowledgements

This work was supported by the German Ministry of Education and Research (BMBF) through the project ProLiFest (03XP0253A). We acknowledge A. Bar for the assistance in preparing Figs. 1–5.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fabian Duffner or Richard Schmuch.

Ethics declarations

Competing interests

F.D. and N.K. are employees at Porsche Consulting GmbH. All other authors have no competing interests.

Additional information

Peer review information Nature Energy thanks Jianlin Li, Yan Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duffner, F., Kronemeyer, N., Tübke, J. et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat Energy 6, 123–134 (2021). https://doi.org/10.1038/s41560-020-00748-8

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing