Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Preservation of proteins in the geosphere

Subjects

Abstract

Deep-time protein preservation has attracted increasing interest and rapid research activity within the palaeobiological community in recent years, but there are several different viewpoints without a cohesive framework for the interpretation of these proteins. Therefore, despite this activity, crucial gaps exist in the understanding of how proteins are preserved in the geological record and we believe it is vital to arrive at a synthesis of the various taphonomic pathways in order to proceed forward with their elucidation. Here we take a critical look at the state of knowledge regarding deep-time protein preservation and argue for the necessity of a more nuanced approach to understanding the molecular taphonomy of proteins through the lens of diagenetic pathways. We also propound an initial framework with which to comprehend the chemical changes undergone by proteins via the concept of ‘proteagen’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protein diagenetic pathways and the proteagen spectrum.

Similar content being viewed by others

References

  1. Campbell, K. L. et al. Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance. Nat. Genet. 42, 536–542 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Huynen, L., Millar, C. D. & Lambert, D. M. Resurrecting ancient animal genomes: the extinct moa and more. BioEssays 34, 661–669 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Ntasi, G. et al. Molecular signatures written in bone proteins of 79 AD victims from Herculaneum and Pompeii. Sci. Rep. 12, 8401 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Briggs, D. E. G. & Summons, R. E. Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36, 482–490 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Warinner, C., Richter, K. K. & Collins, M. J. Paleoproteomics. Chem. Rev. 122, 13401–13446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569, 409–425 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Presslee, S. et al. Palaeoproteomics resolves sloth relationships. Nat. Ecol. Evol. 3, 1121–1130 (2019).

    Article  PubMed  Google Scholar 

  8. Buckley, M., Lawless, C. & Rybczynski, N. Collagen sequence analysis of fossil camels, Camelops and c.f. Paracamelus, from the Arctic and sub-Arctic of Plio-Pleistocene North America. J. Proteom. 194, 218–225 (2019).

    Article  CAS  Google Scholar 

  9. Bray, F. et al. Extinct species identification from late middle Pleistocene and earlier Upper Pleistocene bone fragments and tools not recognizable from their osteomorphological study by an enhanced proteomics protocol. Archaeometry 65, 196–212 (2023).

    Article  CAS  Google Scholar 

  10. Demarchi, B. et al. Protein sequences bound to mineral surfaces persist into deep time. eLife 5, e17092 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Demarchi, B. et al. Survival of mineral bound peptides into the Miocene. eLife 11, e82849 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stolarski, J. et al. First paleoproteome study of fossil fish otoliths and the pristine preservation of the biomineral crystal host. Sci. Rep. 13, 3822 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schweitzer, M. H. et al. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science 316, 277–280 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Schweitzer, M. H., Zheng, W., Cleland, T. P. & Bern, M. Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone 52, 414–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Bern, M., Finney, B. S. & Goldberg, D. Reanalysis of Tyrannosaurus rex mass spectra. J. Proteom. Res. 8, 4328–4332 (2009).

    Article  CAS  Google Scholar 

  16. Buckley, M., Warwood, S., van Dongen, B., Kitchener, A. C. & Manning, P. L. A fossil protein chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-contamination. Proc. R. Soc. B 284, 20170544 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Collins, M. J., Riley, M. S., Child, A. M. & Turner-Walker, G. A basic mathematical simulation of the chemical degradation of ancient collagen. J. Archaeol. Sci. 22, 175–183 (1995).

    Article  Google Scholar 

  18. Briggs, D. E. G., Evershed, R. P. & Lockheart, M. J. in Deep Time: Paleobiology’s Perspective (eds Erwin, D. H. & Wing, S. L.) 169–193 (Palaeontological Society, 2000).

  19. Briggs, D. E. G. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 31, 275–301 (2003).

    Article  ADS  CAS  Google Scholar 

  20. Umamaheswaran, R. et al. Proteins in the geological record under a diagenetic framework: insights from Py-GC × GC-TOFMS. In Proc. 31st International Meeting of Organic Geochemists, 1–2 (European Association of Geoscientists and Engineers, 2023).

  21. Bada, J. L. in Nitrogen-Containing Macromolecules in the Bio- and Geosphere (eds Stankiewicz, A. & van Bergen, P. F.) 64–73 (The American Chemical Society, 1998).

  22. Stankiewicz, B. A., Briggs, D. E. G., Evershed, R. P., Flannery, M. B. & Wuttke, M. Preservation of chitin in 25-million-year-old fossils. Science 276, 1541–1543 (1997).

    Article  CAS  Google Scholar 

  23. Collins, M. J. et al. The survival of organic matter in bone: a review. Archaeometry 44, 383–394 (2002).

    Article  CAS  Google Scholar 

  24. Hare, P. E. in Organic Geochemistry (eds Englinton, G. & Murphy, M. T. J.) 438–462 (Springer-Verlag, 1969).

  25. Pawlicki, R., Korbel, A. & Kubiak, H. Cells, collagen fibrils and vessels in dinosaur bone. Nature 211, 655–657 (1966).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Doberenz, A. R. & Lund, R. Evidence for collagen in a fossil of the Lower Jurassic. Nature 212, 1502–1503 (1966).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Towe, K. M. & Urbanek, A. Collagen-like structures in Ordovician graptolite periderm. Nature 237, 443–445 (1972).

    Article  ADS  Google Scholar 

  28. Hoering, T. C. in Biogeochemistry of Amino Acids (eds Hare, P. E. & Hoering, T. C.) 193–201 (Wiley, 1980).

  29. Mitterer, R. M. in Organic Geochemistry. Principles and Applications (eds Engel, M. H. & Macko, S. A.) 739–753 (Plenum Press, 1993).

  30. Briggs, D. E. G., Kear, A. J., Baas, M., de Leeuw, J. W. & Rigby, S. Decay and composition of the hemichordate Rhabdopleura: implications for the taphonomy of graptolites. Lethaia 28, 15–23 (1995).

    Article  Google Scholar 

  31. Tegelaar, E. W., de Leeuw, J. W., Derenne, S. & Largeau, C. A reappraisal of kerogen formation. Geochim. Cosmochim. Acta 53, 3103–3106 (1989).

    Article  ADS  CAS  Google Scholar 

  32. De Leeuw, J. W. et al. Resistant biomacromolecules as major contributors to kerogen. Phil. Trans. R. Soc. Lond. B 333, 329–337 (1991).

    Article  ADS  Google Scholar 

  33. Briggs, D. E. G., Stankiewicz, B. A., Meischner, D., Bierstedt, A. & Evershed, R. P. Taphonomy of arthropod cuticles from Pliocene lake sediments, Willershausen, Germany. Palaios 13, 386–394 (1998).

    Article  ADS  Google Scholar 

  34. Stankiewicz, B. A., Briggs, D. E. G. & Evershed, R. P. Chemical composition of Paleozoic and Mesozoic fossil invertebrate cuticles as revealed by pyrolysis–gas chromatography/mass spectrometry. Energy Fuels 11, 515–521 (1997).

    Article  CAS  Google Scholar 

  35. Sykes, G. A., Collins, M. J. & Walton, D. I. The significance of a geochemically isolated intracrystalline fraction within biominerals. Org. Geochem. 23, 1059–1065 (1995).

    Article  ADS  CAS  Google Scholar 

  36. Stankiewicz, B. A. et al. Alternative origin of aliphatic polymer in kerogen. Geology 28, 559–562 (2000).

    Article  ADS  CAS  Google Scholar 

  37. Gupta, N. S., Briggs, D. E. G. & Pancost, R. D. Molecular taphonomy of graptolites. J. Geol. Soc. 163, 897–900 (2006).

    Article  ADS  Google Scholar 

  38. Gupta, N. S. & Briggs, D. E. G. in Taphonomy: Processes and Bias Through Time 2nd edn. (eds Allison, P. A. & Bottjer, D. A.) 199–222 (Springer, 2011).

  39. Link, C. M., Bustin, R. M. & Goodarzi, F. Petrology of graptolites and their utility as indices of thermal maturity in Lower Paleozoic strata in northern Yukon, Canada. Int. J. Coal Geol. 15, 113–135 (1990).

    Article  CAS  Google Scholar 

  40. Morga, R. & Kaminska, M. The chemical composition of graptolite periderm in the gas shales from the Baltic Basin of Poland. Int. J. Coal Geol. 199, 10–18 (2018).

    Article  CAS  Google Scholar 

  41. Gupta, N. S., Michels, R., Briggs, D. E. G., Evershed, R. P. & Pancost, R. D. The organic preservation of fossil arthropods: an experimental study. Proc. R. Soc. B 273, 2777–2783 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gupta, N. S. et al. Molecular taphonomy of macrofossils from the Cretaceous Las Hoyas Formation, Spain. Cretac. Res. 29, 1–8 (2008).

    Article  Google Scholar 

  43. Gupta, N. S., Collinson, M. E., Briggs, D. E. G., Evershed, R. P. & Pancost, R. D. Reinvestigation of the occurrence of cutan in plants: implications for the leaf fossil record. Paleobiology 32, 432–449 (2006).

    Article  Google Scholar 

  44. Gupta, N. S. et al. Molecular preservation of plant and insect cuticles from the Oligocene Enspel Formation, Germany: evidence against derivation of aliphatic polymer from sediment. Org. Geochem. 38, 404–418 (2007).

    Article  ADS  CAS  Google Scholar 

  45. Schweitzer, M. H., Johnson, C., Zocco, T., Horner, J. R. & Starkey, J. R. Preservation of biomolecules in cancellous bone of Tyrannosaurus rex. J. Vertebr. Paleontol. 17, 349–359 (1997).

    Article  Google Scholar 

  46. Schweitzer, M. H. et al. Keratin immunoreactivity in the Late Cretaceous bird Rahonavis ostromi. J. Vertebr. Paleontol. 19, 712–722 (1999).

    Article  Google Scholar 

  47. Schweitzer, M. H. et al. Beta-keratin specific immunological reactivity in feather-like structures of the Cretaceous alvarezsaurid, Shuvuuia deserti. J. Exp. Zool. B Mol. Dev. Evol. 285, 146–157 (1999).

    Article  CAS  Google Scholar 

  48. Schweitzer, M. H., Chiappe, L., Garrido, A. C., Lowenstein, J. M. & Pincus, S. H. Molecular preservation in Late Cretaceous sauropod dinosaur eggshells. Proc. R. Soc. B 272, 775–784 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schweitzer, M. H., Wittmeyer, J. L., Horner, J. R. & Toporski, J. K. Soft-tissue vessels and cellular preservation in Tyrannosaurus rex. Science 307, 1952–1955 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Schweitzer, M. H. et al. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 324, 626–631 (2009).

  51. Avci et al. Preservation of bone collagen from the Late Cretaceous period studied by immunological techniques and atomic force microscopy. Langmuir 21, 3584–3590 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Asara, J. M., Schweitzer, M. H., Freimark, L. M., Phillips, M. & Cantley, L. C. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316, 280–285 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Moyer, A. E., Zheng, W. & Schweitzer, M. H. Microscopic and immunohistochemical analyses of the claw of the nesting dinosaur, Citipati osmolskae. Proc. R. Soc. B 283, 20161997 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pan, Y. et al. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis. Proc. Natl Acad. Sci. USA 113, E7900–E7907 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pan, Y. et al. The molecular evolution of feathers with direct evidence from fossils. Proc. Natl Acad. Sci. USA 116, 3018–3023 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schroeter, E. R. et al. Expansion for the Brachylophosaurus canadensis collagen I sequence and additional evidence of the preservation of Cretaceous protein. J. Proteome Res. 16, 920–932 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schroeter, E. R. et al. Soft-tissue, rare Earth element, and molecular analyses of Dreadnoughtus schrani, an exceptionally complete titanosaur from Argentina. Biology 11, 1158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maity, B., Sheff, D. & Fisher R. A. in Methods in Cell Biology Vol. 113 (ed. Conn, P. M.) 81–105 (Elsevier, 2013).

  59. Saitta, E. T. & Vinther, J. A perspective on the evidence for keratin protein preservation in fossils: an issue of replication versus validation. Palaeontol. Electron. 22.3.2E, 1–30 (2019).

    Google Scholar 

  60. Buckley, M. et al. Comment on “Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry”. Science 319, 33 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pevzner, P. A., Kim, S. & Ng, J. Comment on “Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry”. Science 321, 1040 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Saitta, E. T. et al. Preservation of feather fibers from the Late Cretaceous dinosaur Shuvuuia deserti raises concern about immunohistochemical analyses on fossils. Org. Geochem. 125, 142–151 (2018).

    Article  ADS  CAS  Google Scholar 

  63. Saitta, E. T. et al. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. eLife 8, e46205 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lendaro, E. et al. On the problem of immunological detection of antigens in skeletal remains. Am. J. Phys. Anthropol. 86, 429–432 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Collins, M. J., Westbroek, P., Muyzer, G. & de Leeuw, J. Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletons. Geochim. Cosmochim. Acta 56, 1539–1544 (1992).

    Article  ADS  CAS  Google Scholar 

  66. Collins, M. J. et al. Long-term trends in the survival of immunological epitopes entombed in fossil brachiopod skeletons. Org. Geochem. 34, 89–96 (2003).

    Article  ADS  CAS  Google Scholar 

  67. True, L. D. Quality control in molecular immunohistochemistry. Histochem. Cell Biol. 130, 473–480 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lepidi, H. in Paleomicrobiology: Past Human Infections (eds Raoult, D. & Drancourt, M.) 69–72 (Springer-Verlag, 2008).

  69. Tran, T., Aboudharam, D., Raoult, D. & Drancourt, M. Beyond ancient microbial DNA: nonnucleotidic biomolecules for paleomicrobiology. BioTechniques 50, 370–380 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Asara, J. M. et al. Interpreting sequences from mastodon and T. rex. Science 317, 1324–1325 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Asara, J. M. & Schweitzer, M. H. Response to comment on “Protein sequences from mastodon and Tyrannosaurus rex revealed by Mass Spectrometry”. Science 319, 33 (2008).

    Article  ADS  CAS  Google Scholar 

  72. Cleland, T. et al. Mass spectrometry and antibody-based characterization of blood vessels from Brachylophosaurus canadensis. J. Proteom. Res. 14, 5252–5262 (2015).

    Article  CAS  Google Scholar 

  73. Schweitzer, M. H., Schroeter, E. R., Cleland, T. P. & Zheng, W. Paleoproteomics of Meosozoic dinosaurs and other Mesozoic fossils. Proteomics 19, 1800251 (2019).

    Article  Google Scholar 

  74. Moyer, A., Zheng, W. & Schweitzer, M. Keratin durability has implications for the fossil record: results from a 10 year feather degradation experiment. PLoS ONE 11, e0157699 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schweitzer, M. H., Zheng, W., Moyer, A. E., Sjovall, P. & Lindgren, J. Preservation potential of keratin in deep time. PLoS ONE 13, e0206569 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Saitta, E. T. et al. Low fossilization potential of keratin protein revealed by experimental taphonomy. Palaeontology 60, 547–556 (2017).

    Article  Google Scholar 

  77. Umamaheswaran, R. et al. The diagenetic fate of collagen as revealed by analytical pyrolysis of fossil fish scales from deep time. Geobiology 21, 378–389 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Boskovic, D. S. et al. Structural and protein preservation in fossil whale bones from the Pisco Formation (Middle-Upper Miocene), Peru. Palaios 36, 155–164 (2021).

    Article  ADS  Google Scholar 

  79. Dutta, S. et al. Chemical evidence of preserved collagen in 54-million-year-old fish vertebrae. Palaeontology 63, 195–202 (2020).

    Article  Google Scholar 

  80. Bertazzo, S. et al. Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. Nat. Commun. 6, 7352 (2015).

    Article  ADS  PubMed  Google Scholar 

  81. McCoy, V. E. et al. Ancient amino acids from fossil feathers in amber. Sci. Rep. 9, 6420 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  82. Dhiman, H., Dutta, S., Kumar, S., Verma, V. & Prasad, G. V. R. discovery of proteinaceous moieties in Late Cretaceous dinosaur eggshell. Palaeontology 64, 585–595 (2021).

    Article  Google Scholar 

  83. Alfonso-Rojas, A. & Cadena, E. Exceptionally preserved ‘skin’ in an Early Cretaceous fish from Colombia. PeerJ 8, e9479 (2021).

    Article  Google Scholar 

  84. Lindgren, J. et al. Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur. Nature 564, 359–365 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Cincotta, A. et al. Chemical preservation of tail feathers from Anchiornis huxleyi, a theropod dinosaur from the Tiaojishan Formation (Upper Jurassic, China). Palaeontology 63, 841–863 (2020).

    Article  Google Scholar 

  86. Surmik, D. et al. Spectroscopic studies on organic matter from Triassic reptile bones, Upper Silesia, Poland. PLoS ONE 11, e0151143 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Almeida, P. Proteins: Concepts in Biochemistry (Taylor & Francis Group, 2016).

  88. Muscente, A. D. et al. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res. 48, 164–188 (2017).

    Article  ADS  CAS  Google Scholar 

  89. Wiemann, J. et al. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat. Commun. 9, 4741 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  90. Dobberstein, R. C. et al. Archaeological collagen: why worry about collagen diagenesis? Archaeol. Anthropol. Sci. 1, 31–42 (2009).

    Article  Google Scholar 

  91. Cleland, T. P., Schroeter, E. R. & Colleary, C. Diagenetiforms: a new term to explain protein changes as a result of diagenesis in paleoproteomics. J. Proteom. 230, 103992 (2021).

    Article  CAS  Google Scholar 

  92. Hendy, J. et al. A guide to ancient protein studies. Nat. Ecol. Evol. 2, 791–799 (2018).

    Article  PubMed  Google Scholar 

  93. Cucina, A. et al. Meta-proteomic analysis of two mammoth’s trunks by EVA technology and high-resolution mass spectrometry for an indirect picture of their habitat and the characterization of the collagen type I, alpha-1 and alpha-2 sequence. Amino Acids 54, 935–954 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Briggs, D. E. G., Wilby, P. R., Pérez-Moreno, B. P., Sanz, J. L. & Fregenal-Martínez, M. The mineralization of dinosaur soft tissue in the Lower Cretaceous of Las Hoyas, Spain. J. Geol. Soc. 154, 587–588 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R.U. acknowledges the University Grants Commission of India for funding through the Junior Research Fellowship. S.D. acknowledges the Department of Science and Technology of the Government of India (project code DST/SJF/E&ASA01/2016-17).

Author information

Authors and Affiliations

Authors

Contributions

R.U. and S.D. contributed equally to the conception, writing and editing of the manuscript. R.U. prepared the figures.

Corresponding authors

Correspondence to Raman Umamaheswaran or Suryendu Dutta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umamaheswaran, R., Dutta, S. Preservation of proteins in the geosphere. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02366-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02366-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing