Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nitrogen isotopes reveal independent origins of N2-fixing symbiosis in extant cycad lineages

Abstract

Cycads are ancient seed plants (gymnosperms) that emerged by the early Permian. Although they were common understory flora and food for dinosaurs in the Mesozoic, their abundance declined markedly in the Cenozoic. Extant cycads persist in restricted populations in tropical and subtropical habitats and, with their conserved morphology, are often called ‘living fossils.’ All surviving taxa receive nitrogen from symbiotic N2-fixing cyanobacteria living in modified roots, suggesting an ancestral origin of this symbiosis. However, such an ancient acquisition is discordant with the abundance of cycads in Mesozoic fossil assemblages, as modern N2-fixing symbioses typically occur only in nutrient-poor habitats where advantageous for survival. Here, we use foliar nitrogen isotope ratios—a proxy for N2 fixation in modern plants—to probe the antiquity of the cycad–cyanobacterial symbiosis. We find that fossilized cycad leaves from two Cenozoic representatives of extant genera have nitrogen isotopic compositions consistent with microbial N2 fixation. In contrast, all extinct cycad genera have nitrogen isotope ratios that are indistinguishable from co-existing non-cycad plants and generally inconsistent with microbial N2 fixation, pointing to nitrogen assimilation from soils and not through symbiosis. This pattern indicates that, rather than being ancestral within cycads, N2-fixing symbiosis arose independently in the lineages leading to living cycads during or after the Jurassic. The preferential survival of these lineages may therefore reflect the effects of competition with angiosperms and Cenozoic climatic change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nitrogen isotope fractionation in the terrestrial nitrogen cycle.
Fig. 2: Nitrogen isotopic analyses of select fossil samples.
Fig. 3: Foliar nitrogen isotope data from cycad (blue) and non-cycad (red) fossils across the last 250 Myr.
Fig. 4: Evolutionary ecology of cycads.

Similar content being viewed by others

Data availability

Fossil occurrence data were downloaded from the Paleobiology Database (https://paleobiodb.org/) by means of the paleobioDB package in R (v.0.7.0). Non-N2-fixing plant nitrogen isotope data were downloaded from the TRY plant trait database (https://www.try-db.org/). Source data are provided with this paper.

Code availability

All code generated in this study is available in Supplementary Codes 1, 2, 3 and 4 as well as at https://github.com/m-kipp/cycad-evolution.

References

  1. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Dos Santos, P. C., Fang, Z., Mason, S. W., Setubal, J. C. & Dixon, R. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13, 162 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rai, A. N., Söderbäck, E. & Bergman, B. Tansley Review No. 116: Cyanobacterium–plant symbioses. New Phytol. 147, 449–481 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Vessey, J. K., Pawlowski, K. & Bergman, B. Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil 274, 51–78 (2005).

    Article  CAS  Google Scholar 

  5. Halliday, J. & Pate, J. S. Symbiotic nitrogen fixation by coralloid roots of the cycad Macrozamia riedlei: physiological characteristics and ecological significance. Funct. Plant Biol. 3, 349–358 (1976).

    Article  CAS  Google Scholar 

  6. Bond, W. J. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36, 227–249 (1989).

    Article  Google Scholar 

  7. Stüeken, E. E., Kipp, M. A., Koehler, M. C. & Buick, R. The evolution of Earth’s biogeochemical nitrogen cycle. Earth Sci. Rev. 160, 220–239 (2016).

    Article  Google Scholar 

  8. Rasmussen, U. & Nilsson, M. in Cyanobacteria in Symbiosis (eds Rai, A. N. et al.) 313–328 (Springer, 2002).

  9. Costa, J.-L. & Lindblad, P. in Cyanobacteria in Symbiosis (eds Rai, A. N. et al.) 195–205 (Springer, 2002).

  10. Chang, A. C. G., Chen, T., Li, N. & Duan, J. Perspectives on endosymbiosis in coralloid roots: association of cycads and cyanobacteria. Front. Microbiol. 10, 1888 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  11. Pate, J. S., Lindblad, P. & Atkins, C. A. Pathways of assimilation and transfer of fixed nitrogen in coralloid roots of cycad–Nostoc symbioses. Planta 176, 461–471 (1988).

    Article  CAS  Google Scholar 

  12. Lindblad, P. & Bergman, B. Lindblad, P. & Bergman, B. in Handbook of Symbiotic Cyanobacteria (ed. Rai, A. N.) 137–159 (CRC Press, 1990).

  13. Raven, J. A. in Cyanobacteria in Symbiosis (eds Rai, A. N. et al.) 329–346 (Springer, 2002).

  14. Taylor, E. L., Taylor, T. N. & Krings, M. Paleobotany: The Biology and Evolution of Fossil Plants (Academic Press, 2009).

  15. Hermsen, E. J., Taylor, T. N., Taylor, E. L. & Stevenson, D. W. Cataphylls of the Middle Triassic cycad Antarcticycas schopfii and new insights into cycad evolution. Am. J. Bot. 93, 724–738 (2006).

    Article  PubMed  Google Scholar 

  16. Martínez, L. C. A., Artabe, A. E. E. & Bodnar, J. A new cycad stem from the Cretaceous in Argentina and its phylogenetic relationships with other Cycadales. Bot. J. Linn. Soc. 170, 436–458 (2012).

    Article  Google Scholar 

  17. Coiro, M., Allio, R., Mazet, N., Seyfullah, L. J. & Condamine, F. L. Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity. New Phytol. 240, 1616–1635 (2023).

  18. Nagalingum, N. S. et al. Recent synchronous radiation of a living fossil. Science 334, 796–799 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Condamine, F. L., Nagalingum, N. S., Marshall, C. R. & Morlon, H. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol. Biol. 15, 65 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  20. Shearer, G. & Kohl, D. H. N2-fixation in field settings: estimations based on natural 15N abundance. Funct. Plant Biol. 13, 699–756 (1986).

    CAS  Google Scholar 

  21. Robinson, D. δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16, 153–162 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Evans, R. D. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 6, 121–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Kipp, M. A. et al. Exploring cycad foliage as an archive of the isotopic composition of atmospheric nitrogen. Geobiology 18, 152–166 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Álvarez-Yépiz, J. C., Cueva, A., Dovčiak, M., Teece, M. & Yepez, E. A. Ontogenetic resource-use strategies in a rare long-lived cycad along environmental gradients. Conserv. Physiol. 2, 1–12 (2014).

    Article  Google Scholar 

  25. Pate, J. S. & Unkovich, M. J. in Physiological Plant Ecology (eds Scholes, J. D. & Barker, M. G.) 153–173 (Blackwell Science, 1999).

  26. Yoneyama, T., Muraoka, T., Murakami, T. & Boonkerd, N. Natural abundance of 15N in tropical plants with emphasis on tree legumes. Plant Soil 153, 295–304 (1993).

    Article  Google Scholar 

  27. Shearer, G. et al. Estimates of N2-fixation from variation in the natural abundance of 15N in Sonoran Desert ecosystems. Oecologia 56, 365–373 (1983).

    Article  CAS  Google Scholar 

  28. Gröcke, D. R. Carbon-isotope analyses of fossil plants as a chemostratigraphic and palaeoenvironmental tool. Lethaia 31, 1–13 (1998).

    Article  Google Scholar 

  29. Kustatscher, E. & Van Konijnenburg-van Cittert, J. H. Seed ferns and cycadophytes from the Triassic flora of Thale (Germany). Neues Jahrb. F.ür. Geol. Paläontol. 258, 195–217 (2010).

    Article  Google Scholar 

  30. Pott, C., Kerp, H. & Krings, M. Morphology and epidermal anatomy of Nilssonia (cycadalean foliage) from the Upper Triassic of Lunz (Lower Austria). Rev. Palaeobot. Palynol. 143, 197–217 (2007).

    Article  Google Scholar 

  31. McElwain, J. C., Popa, M. E., Hesselbo, S. P., Haworth, M. & Surlyk, F. Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology 33, 547–573 (2007).

    Article  Google Scholar 

  32. Harris, T. M. Cones of extinct Cycadales from the Jurassic rocks of Yorkshire. Philos. Trans. R. Soc. Lond. B 231, 75–98 (1941).

    Article  Google Scholar 

  33. Jonsson, C. H. & Hebda, R. J. Macroflora, paleogeography and paleoecology of the Upper Cretaceous (Turonian?–Santonian) Saanich Member of the Comox Formation, Saanich Peninsula, British Columbia, Canada. Can. J. Earth Sci. 52, 519–536 (2015).

    Article  Google Scholar 

  34. Johnson, K. R. & Ellis, B. A tropical rainforest in Colorado 1.4 million years after the Cretaceous–Tertiary boundary. Science 296, 2379–2383 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Hill, R. S., Hill, K. E., Carpenter, R. J. & Jordan, G. J. New macrofossils of the Australian cycad Bowenia and their significance in reconstructing the past morphological range of the genus. Int. J. Plant Sci. 180, 128–140 (2019).

    Article  Google Scholar 

  36. Mustoe, G. E. Cycadophyte Fossils from the Pacific Northwest. Cycad Newsl. 31, 28–32 (2008).

    Google Scholar 

  37. Erdei, B., Calonje, M., Hendy, A. & Espinosa, N. A review of the Cenozoic fossil record of the genus Zamia L. (Zamiaceae, Cycadales) with recognition of a new species from the late Eocene of Panama—evolution and biogeographic inferences. Bull. Geosci. 93, 185–204 (2018).

    Article  Google Scholar 

  38. Kvaček, Z. New fossil records of Ceratozamia (Zamiaceae, Cycadales) from the European Oligocene and lower Miocene. Acta Palaeobot. 54, 231–247 (2014).

    Article  Google Scholar 

  39. Erdei, B., Akgün, F. & Barone Lumaga, M. R. Pseudodioon akyoli gen. et sp. nov., an extinct member of Cycadales from the Turkish Miocene. Plant Syst. Evol. 285, 33–49 (2010).

    Article  Google Scholar 

  40. Smoot, E. L., Taylor, T. N. & Delevoryas, T. Structurally preserved fossil plants from Antarctica. I. Antarcticycas, gen. nov., a Triassic cycad stem from the Beardmore Glacier area. Am. J. Bot. 72, 1410–1423 (1985).

    Article  Google Scholar 

  41. de Jesus Suarez-Moo, P., Vovides, A. P., Griffith, M. P., Barona-Gomez, F. & Cibrian-Jaramillo, A. Unlocking a high bacterial diversity in the coralloid root microbiome from the cycad genus Dioon. PLoS ONE 14, e0211271 (2019).

    Article  Google Scholar 

  42. Hermsen, E. J., Taylor, E. L. & Taylor, T. N. Morphology and ecology of the Antarcticycas plant. Rev. Palaeobot. Palynol. 153, 108–123 (2009).

    Article  Google Scholar 

  43. Smith, S. A., Beaulieu, J. M. & Donoghue, M. J. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc. Natl Acad. Sci. USA 107, 5897–5902 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lidgard, S. & Crane, P. R. Quantitative analyses of the early angiosperm radiation. Nature 331, 344–346 (1988).

    Article  Google Scholar 

  45. Augusto, L., Davies, T. J., Delzon, S. & De Schrijver, A. The enigma of the rise of angiosperms: can we untie the knot? Ecol. Lett. 17, 1326–1338 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Boyce, C. K., Ibarra, D. E., Nelsen, M. P. & D’Antonio, M. P. Nitrogen-based symbioses, phosphorus availability and accounting for a modern world more productive than the Paleozoic. Geobiology 21, 86–101 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Carvalho, M. R. et al. Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science 372, 63–68 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Berendse, F. & Scheffer, M. The angiosperm radiation revisited, an ecological explanation for Darwin’s ‘abominable mystery’. Ecol. Lett. 12, 865–872 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  50. Spicer, R. A., Rees, P. M. & Chapman, J. L. Cretaceous phytogeography and climate signals. Philos. Trans. R. Soc. Lond. B 341, 277–286 (1993).

    Article  Google Scholar 

  51. Rees, P. M., Noto, C. R., Parrish, J. M. & Parrish, J. T. Late Jurassic climates, vegetation and dinosaur distributions. J. Geol. 112, 643–653 (2004).

    Article  Google Scholar 

  52. Keenan, S. W., Schaeffer, S. M., Jin, V. L. & DeBruyn, J. M. Mortality hotspots: nitrogen cycling in forest soils during vertebrate decomposition. Soil Biol. Biochem. 121, 165–176 (2018).

    Article  CAS  Google Scholar 

  53. Coplen, T. B. et al. New guidelines for δ13C measurements. Anal. Chem. 78, 2439–2441 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

  55. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

  56. Varela, S. et al. paleobioDB: an R package for downloading, visualizing and processing data from the Paleobiology Database. Ecography 38, 419–425 (2015).

    Article  Google Scholar 

  57. Starrfelt, J. & Liow, L. H. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model. Philos. Trans. R. Soc. B 371, 20150219 (2016).

    Article  Google Scholar 

  58. Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).

    Article  Google Scholar 

  59. Close, R. A., Evers, S. W., Alroy, J. & Butler, R. J. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods Ecol. Evol. 9, 1386–1400 (2018).

    Article  Google Scholar 

  60. Foote, M. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26, 74–102 (2000).

    Article  Google Scholar 

  61. Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Article  Google Scholar 

  62. Seyitoǧlu, G. & Scott, B. Late Cenozoic crustal extension and basin formation in west Turkey. Geol. Mag. 128, 155–166 (1991).

    Article  Google Scholar 

  63. İnci, U. Depositional evolution of Miocene coal successions in the Soma coalfield, western Turkey. Int. J. Coal Geol. 51, 1–29 (2002).

    Article  Google Scholar 

  64. Gemici, J., Akyol, E., Akgün, F. & Sečmen, Ö. Soma kömür havzasi fosil makro ve mikroflorasi. Maden Tetk. Ve Aram. Derg. 112, 161–168 (1991).

    Google Scholar 

  65. Takahashi, K. & Jux, U. Miocene palynomorphs from lignites of the Soma Basin (west Anatolia, Turkey). Bull. Fac. Lib. Arts 32, 7–165 (1991).

    Google Scholar 

  66. Akgun, F. Palynological age revision of the Neogene Soma coal basin. Bull. Geol. Soc. Greece 28, 151 (1993).

    Google Scholar 

  67. Benda, L., Innocenti, F., Mazzuoli, R., Radicati, F. & Steffens, P. Stratigraphic and radiometric data of the Neogene in Northwest Turkey (Cenozoic and Lignites in Turkey. 16.). Z. Dtsch. Geol. Ges. 125, 183–193 (1974).

  68. Becker-Platen, J. D., Benda, L. & Steffens, P. Litho-und biostratigraphische Deutung radiometrischer Altersbestimmungen aus dem Jungtertiär der Türkei (Schweizerbart’sche Verlagsbuchhandlung, 1977).

  69. Benda, L. & Meulenkamp, J. E. Biostratigraphic correlations in the Eastern Mediterranean Neogene. 5. Calibration of sporomorph associations, marine microfossils and mammal zones, marine and continental stages and the radiometric scale. Ann. Geol. Pays Hell. Hor. Ser. 1, 61–70 (1979).

    Google Scholar 

  70. Matys Grygar, T. et al. A lacustrine record of the early stage of the Miocene climatic optimum in Central Europe from the most basin, Ohře (eger) Graben, Czech Republic. Geol. Mag. 151, 1013–1033 (2014).

    Article  Google Scholar 

  71. Kvacek, Z. Early Miocene freshwater and swamp ecosystems of the Most Basin (northern Bohemia) with particular reference to the Bílina Mine section. J. Geosci. 49, 1–40 (2004).

    Google Scholar 

  72. Kvaček, Z. & Teodoridis, V. Tertiary macrofloras of the Bohemian Massif: a review with correlations within Boreal and Central Europe. Bull. Geosci. 82, 383–408 (2007).

    Article  Google Scholar 

  73. Fejfar, O. & Kvaček, Z. Excursion No. 3: Tertiary Basins in Northwest Bohemia (Prague Univ., 1993).

  74. Ekrt, B., Novotnỳ, T. & Přikryl, T. New ichthyofauna from the Holešice and Libkovice members in the western part of Most Basin (Early Miocene), the Czech Republic. Foss. Impr. 78, 519–526 (2022).

    Article  Google Scholar 

  75. Woodring, W. P. & Thompson, T. F. Tertiary formations of Panama Canal Zone and adjoining parts of Panama. AAPG Bull. 33, 223–247 (1949).

    Google Scholar 

  76. Woodring, W. P. Geology and Paleontology of Canal Zone and Adjoining Parts of Panama: Description of Tertiary Mollusks (Additions to Gastropods, Scaphopods, Pelecypods Nuculidae to Malleidae) (USGS, 1973).

  77. Ramírez, D. A. et al. Exhumation of the Panama basement complex and basins: implications for the closure of the Central American seaway. Geochem. Geophys. Geosyst. 17, 1758–1777 (2016).

    Article  Google Scholar 

  78. Tripati, A. & Zachos, J. Late Eocene tropical sea surface temperatures: a perspective from Panama. Paleoceanography 17, 4-1–4-14 (2002).

    Article  Google Scholar 

  79. Coryell, H. N. & Embich, J. R. The Tranquilla shale (upper Eocene) of Panama and its foraminiferal fauna. J. Paleontol. 11, 289–305 (1937).

  80. Cole, W. S. Upper Eocene larger foraminifera from the Panama Canal Zone. J. Paleontol. 267–275 (1949).

  81. Cole, W. S. Eocene and Oligocene Larger Foraminifera from the Panama Canal Zone and Vicinity (US Department of the Interior, 1952).

  82. Graham, A. Studies in neotropical paleobotany. IV. The Eocene communities of Panama. Ann. Mo. Bot. Gard. 72, 504–534 (1985).

  83. O’Dea, A. et al. Formation of the Isthmus of Panama. Sci. Adv. 2, e1600883 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  84. Johnson, S. Y. Stratigraphy, age and paleogeography of the Eocene Chuckanut Formation, northwest Washington. Can. J. Earth Sci. 21, 92–106 (1984).

    Article  Google Scholar 

  85. McLellan, R. D. The geology of the San Juan Islands. Univ. Wash. Publ. Geol. 2, 185.

  86. Glover, S. L. Oil and gas possibilities of western Whatcom County. Wash. Div. Geol. Rep. Investig. 2, 69 (1935).

    Google Scholar 

  87. Weaver, C. E. Tertiary stratigraphy of western Washington and northwestern Oregon. Univ. Wash. Publ. Geol. 4, 266 (1937).

    Google Scholar 

  88. Johnson, S. Y. in Strike-Slip Deformation, Basin Formation, and Sedimentation (eds Biddle, K. T. & Christie-Blick, N.) 283–302 (Society of Economic Paleontologists and Mineralogists, 1985).

  89. Evans, J. E. Depositional history of the Eocene Chumstick Formation: implications of tectonic partitioning for the history of the Leavenworth and Entiat-Eagle Creek fault systems, Washington. Tectonics 13, 1425–1444 (1994).

    Article  Google Scholar 

  90. Evans, J. E. & Ristow, R. J. Jr Depositional history of the southeastern outcrop belt of the Chuckanut Formation: implications for the Darrington–Devil’s Mountain and Straight Creek fault zones, Washington (USA). Can. J. Earth Sci. 31, 1727–1743 (1994).

    Article  Google Scholar 

  91. Cheney, E. S. Cenozoic Unconformity-Bounded Sequences of Central and Eastern Washington (Washington State Department of Natural Resources, 1994).

  92. Mustoe, G. E. & Gannaway, W. Paleogeography and paleontology of the early Tertiary Chuckanut Formation, northwest Washington. Wash. Geol. 25, 3–18 (1997).

    Google Scholar 

  93. Pabst, M. B. The Flora of the Chuckanut Formation of Northwestern Washington—The Equisetales, Filicales, Coniferales (Univ. California, 1968).

  94. Miller, G. M. & Misch, P. Early Eocene angular unconformity at western front of northern Cascades, Whatcom County, Washington. Am. Assoc. Pet. Geol. Bull. 47, 163–174 (1963).

    Google Scholar 

  95. Mustard, P. S. & Rouse, G. E. in Geology and Geological Hazards of the Vancouver Region, Southwestern British Columbia (ed. Monger, J. W. H.) 97–169 (Geological Survey of Canada, 1994).

  96. Tabor, R. W., Frizzell, V. A. Jr, Vance, J. A. & Naeser, C. W. Ages and stratigraphy of lower and middle Tertiary sedimentary and volcanic rocks of the central Cascades, Washington: Application to the tectonic history of the Straight Creek fault. Geol. Soc. Am. Bull. 95, 26–44 (1984).

    Article  CAS  Google Scholar 

  97. Whetten, J. T., Carroll, P. L., Gower, H. D., Brown, E. H. & Pessl, F. Bedrock Geologic Map of the Port Townsend 30- by 60-Minute Quadrangle, Puget Sound Region, Washington (USGS, 1988).

  98. Hill, P. J., Meixner, A. J., Moore, A. M. G. & Exon, N. F. Structure and development of the west Tasmanian offshore sedimentary basins: results of recent marine and aeromagnetic surveys. Aust. J. Earth Sci. 44, 579–596 (1997).

    Article  Google Scholar 

  99. Pole, M. S. Early Eocene estuary at Strahan, Tasmania. Aust. J. Earth Sci. 45, 979–985 (1998).

    Article  Google Scholar 

  100. Carpenter, R. J., Jordan, G. J., Macphail, M. K. & Hill, R. S. Near-tropical Early Eocene terrestrial temperatures at the Australo-Antarctic margin, western Tasmania. Geology 40, 267–270 (2012).

    Article  Google Scholar 

  101. Pole, M. S. & Macphail, M. K. Eocene Nypa from Regatta Point, Tasmania. Rev. Palaeobot. Palynol. 92, 55–67 (1996).

    Article  Google Scholar 

  102. McLoughlin, S., Carpenter, R. J., Jordan, G. J. & Hill, R. S. Seed ferns survived the end-Cretaceous mass extinction in Tasmania. Am. J. Bot. 95, 465–471 (2008).

    Article  Google Scholar 

  103. Carpenter, R. J., Jordan, G. J. & Hill, R. S. A toothed Lauraceae leaf from the Early Eocene of Tasmania, Australia. Int. J. Plant Sci. 168, 1191–1198 (2007).

    Article  Google Scholar 

  104. Conran, J. G., Carpenter, R. J. & Jordan, G. J. Early Eocene Ripogonum (Liliales: Ripogonaceae) leaf macrofossils from southern Australia. Aust. Syst. Bot. 22, 219–228 (2009).

    Article  Google Scholar 

  105. Wells, P. M. & Hill, R. S. Fossil imbricate-leaved Podocarpaceae from Tertiary sediments in Tasmania. Aust. Syst. Bot. 2, 387–423 (1989).

    Article  Google Scholar 

  106. Hill, R. S. & Carpenter, R. J. Evolution of Acmopyle and Dacrycarpus (Podocarpaceae) foliage as inferred from macrofossils in south-eastern Australia. Aust. Syst. Bot. 4, 449–479 (1991).

    Article  Google Scholar 

  107. Partridge, A. D. in Australian Mesozoic and Cenozoic Palynology Zonations—Updated to the 2004 Geologic Time Scale (ed. Monteil, E.) Chart 4 (Commonwealth of Australia (Geoscience Australia), 2006).

  108. Ellis, B., Johnson, K. R. & Dunn, R. E. Evidence for an in situ early Paleocene rainforest from Castle Rock, Colorado. Rocky Mt. Geol. 38, 73–100 (2003).

    Article  Google Scholar 

  109. Ellis, B. & Johnson, K. R. Comparison of leaf samples from mapped tropical and temperate forests: implications for interpretations of the diversity of fossil assemblages. Palaios 28, 163–177 (2013).

    Article  Google Scholar 

  110. Raynolds, R. G. Upper Cretaceous and Tertiary stratigraphy of the Denver basin, Colorado. Rocky Mt. Geol. 37, 111–134 (2002).

    Article  Google Scholar 

  111. Kowalczyk, J. B. et al. Multiple proxy estimates of atmospheric CO2 from an early Paleocene rainforest. Paleoceanogr. Paleoclimatol. 33, 1427–1438 (2018).

    Article  Google Scholar 

  112. Erdei, B. et al. First cycad seedling foliage from the fossil record and inferences for the Cenozoic evolution of cycads. Biol. Lett. 15, 20190114 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  113. Mustard, P. S. in Geology and Geological Hazards of the Vancouver Region, Southwestern British Columbia (ed. Monger, J. W. H.) 27–95 (Geological Survey of Canada, 1994).

  114. Johnstone, P. D., Mustard, P. S. & MacEachern, J. A. The basal unconformity of the Nanaimo Group, southwestern British Columbia: a Late Cretaceous storm-swept rocky shoreline. Can. J. Earth Sci. 43, 1165–1181 (2006).

    Article  Google Scholar 

  115. Jones, M. T., Dashtgard, S. E. & MacEachern, J. A. A conceptual model for the preservation of thick, transgressive shoreline successions: examples from the forearc Nanaimo Basin, British Columbia, Canada. J. Sediment. Res. 88, 811–826 (2018).

    Article  CAS  Google Scholar 

  116. Kenyon, C., Cathyl-Bickford, C. G. & Hoffman, G. Quinsam and Chute Creek Coal Deposits (NTS 92F/13, 14) (British Colombia Geological Survey, 1992).

  117. Dawson, J. W. On new species of Cretaceous plants from Vancouver Island. Trans. R. Soc. Can. 11, 53–72 (1893).

    Google Scholar 

  118. Harris, T. M. I.—Notes on the Jurassic flora of Yorkshire, 28–30. Ann. Mag. Nat. Hist. 13, 1–24 (1946).

    Article  Google Scholar 

  119. van Konijnenburg-Van Cittert, J. H. & Morgans, H. S. The Jurassic flora of Yorkshire Vol. 8 (Palaeontological Association London, 1999).

  120. Crane, P. R. & Herendeen, P. S. Bennettitales from the Grisethorpe Bed (Middle Jurassic) at Cayton Bay, Yorkshire, UK. Am. J. Bot. 96, 284–295 (2009).

    Article  PubMed  Google Scholar 

  121. Livera, S. E. & Leeder, M. R. The Middle Jurassic Ravenscar Group (‘Deltaic Series’) of Yorkshire: recent sedimentological studies as demonstrated during a field meeting 2–3 May 1980. Proc. Geol. Assoc. 92, 241–250 (1981).

    Article  Google Scholar 

  122. van Konijnenburg-van Cittert, J. H. The Jurassic fossil plant record of the UK area. Proc. Geol. Assoc. 119, 59–72 (2008).

    Article  Google Scholar 

  123. Dam, G. & Surlyk, F. Forced regressions in a large wave-and storm-dominated anoxic lake, Rhaetian-Sinemurian Kap Stewart Formation, East Greenland. Geology 20, 749–752 (1992).

    Article  Google Scholar 

  124. Surlyk, F. The Jurassic of East Greenland: a sedimentary record of thermal subsidence, onset and culmination of rifting. GEUS Bull. 1, 657–722 (2003).

    Article  Google Scholar 

  125. Mander, L., Kürschner, W. M. & McElwain, J. C. Palynostratigraphy and vegetation history of the Triassic–Jurassic transition in East Greenland. J. Geol. Soc. 170, 37–46 (2013).

    Article  Google Scholar 

  126. Harris, T. M. The Fossil Flora of Scoresby Sound, East Greenland: Stratigraphic Relations of the Plant Beds Vol. 5 (C.A. Reitzels Forlag, 1937).

  127. Harris, T. M. The Fossil Flora of Scoresby Sound, East Greenland. Part 2: Description of Seed Plants Incertae sedis Together With a Discussion of Certain Cycadophyte Cuticles (Alexander Doweld, 1932).

  128. Pedersen, K. R. & Lund, J. J. Palynology of the plant-bearing Thaetian to Hettangian Kap Stewart formation, Scoresby Sund, East Greenland. Rev. Palaeobot. Palynol. 31, 1–69 (1980).

    Article  Google Scholar 

  129. Dobruskina, I. A. Lunz flora in the Austrian Alps—a standard for Carnian floras. Palaeogeogr. Palaeoclimatol. Palaeoecol. 143, 307–345 (1998).

    Article  Google Scholar 

  130. Pott, C., Krings, M. & Kerp, H. The Carnian (Late Triassic) flora from Lunz in Lower Austria: paleoecological considerations. Palaeoworld 17, 172–182 (2008).

    Article  Google Scholar 

  131. Hornung, T. & Brandner, R. Biochronostratigraphy of the Reingraben Turnover (Hallstatt Facies Belt): local black shale events controlled by regional tectonics, climatic change and plate tectonics. Facies 51, 460–479 (2005).

    Article  Google Scholar 

  132. Hornung, T., Brandner, R., Krystyn, L., Joachimski, M. M. & Keim, L. Multistratigraphic constraints on the NW Tethyan ‘Carnian crisis’. Glob. Triassic 41, 59–67 (2007).

    Google Scholar 

  133. Bharadwaj, D. C. & Singh, H. P. An Upper Triassic miospore assemblage from the coals of Lunz, Austria. J. Palaeosci. 12, 28–44 (1963).

  134. von Ettingshausen, C. F. Beiträge zur Flora der Vorwelt (W. Braumüller, 1851).

  135. Stur, D. Die obertriadische Flora der Lunzer Schichten und des bituminösen Schiefers von Raibl. Sitzungsber. Kaiserl. Akad. Wiss. Math. Naturwiss. Cl. 91, 93–103 (1885).

  136. Pott, C., Bouchal, J. M., Choo, T., Yousif, R. & Bomfleur, B. Ferns and fern allies from the Carnian (Upper Triassic) of Lunz am See, Lower Austria: a melting pot of Mesozoic fern vegetation. Palaeontogr. Abt. B Palaophytol. 297, 1–101 (2018).

    Article  Google Scholar 

  137. Pott, C. & Launis, A. Taeniopteris novomundensis sp. nov.—‘cycadophyte’ foliage from the Carnian of Switzerland and Svalbard reconsidered: how to use Taeniopteris. Neues Jahrb. F.ür. Geol. Paläontol. Abh. 275, 19–31 (2015).

    Article  Google Scholar 

  138. Pott, C., van Konijnenburg-van Cittert, J. H., Kerp, H. & Krings, M. Revision of the Pterophyllum species (Cycadophytina: Bennettitales) in the Carnian (Late Triassic) flora from Lunz, Lower Austria. Rev. Palaeobot. Palynol. 147, 3–27 (2007).

    Article  Google Scholar 

  139. Pott, C. & Van Konijnenburg-Van Cittert, J. H. The type specimen of Nilssoniopteris solitaria (Phillips 1829) Cleal et PM Rees 2003 (Bennettitales). Acta Palaeobot. 57, 177–184 (2017).

    Article  Google Scholar 

  140. Nathorst, A. G. PB Richter’s Paläobotanische Sammlungen. Paläobotanische Zeitschrift 1, 1–2 (1912).

    Google Scholar 

  141. Kustatscher, E. & Konijnenburg-van Cittert, J. H. Lycophytes and horsetails from the Triassic Flora of Thale (Germany). Neues Jahrb. Für Geol. Paläontol. Abh. 250, 65–77 (2008).

  142. Kustatscher, E., Heunisch, C. & Van Konijnenburg-Van Cittert, J. H. Taphonomical implications of the Ladinian megaflora and palynoflora of Thale (Germany). Palaios 27, 753–764 (2012).

    Article  Google Scholar 

  143. Taylor, E. L., Taylor, T. N. & Collinson, J. W. Depositional setting and paleobotany of Permian and Triassic permineralized peat from the central Transantarctic Mountains, Antarctica. Int. J. Coal Geol. 12, 657–679 (1989).

    Article  CAS  Google Scholar 

  144. Cúneo, N. R., Taylor, E. L., Taylor, T. N. & Krings, M. In situ fossil forest from the upper Fremouw Formation (Triassic) of Antarctica: paleoenvironmental setting and paleoclimate analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 197, 239–261 (2003).

    Article  Google Scholar 

  145. Elliot, D. H., Colbert, E. H., Breed, W. J., Jensen, J. A. & Powell, J. S. Triassic tetrapods from Antarctica: evidence for continental drift. Science 169, 1197–1201 (1970).

    Article  CAS  PubMed  Google Scholar 

  146. Farabee, M. J., Taylor, E. L. & Taylor, T. N. Correlation of Permian and Triassic palynomorph assemblages from the central Transantarctic Mountains, Antarctica. Rev. Palaeobot. Palynol. 65, 257–265 (1990).

    Article  Google Scholar 

  147. Klavins, S. D., Taylor, E. L., Krings, M. & Taylor, T. N. Gymnosperms from the Middle Triassic of Antarctica: the first structurally preserved cycad pollen cone. Int. J. Plant Sci. 164, 1007–1020 (2003).

    Article  Google Scholar 

  148. Hermsen, E., Taylor, T. N., Taylor, E. L. & Stevenson, D. W. Cycads from the Triassic of Antarctica: permineralized cycad leaves. Int. J. Plant Sci. 168, 1099–1112 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We dedicate this paper to N. Nagalingum, whose pioneering research laid the foundations for this work by showing evidence of dramatic changes in recent cycad evolution and who also generously helped to locate suitable fossil cycad specimens for nitrogen isotope analysis in an early stage of this study. We also thank numerous individuals and institutions who assisted with providing access to or information about fossil collections, including P. Wilson Deibel, K. Anderson, D. Hopkins, R. Eng, M. Rivin, R. Serbet, B. Atkinson, P. Mayer, J. Watson, M. Pole, C. Liu, J. Wang, G. Shi, S. Manchester, H. Wang, A. Hendy, C. Jaramillo, P. Hayes, L. Stevens, J. Todd and T. Güner. A. Schauer is thanked for tireless technical assistance. M.A.K. acknowledges support from an NSF Graduate Research Fellowship and an Agouron Institute Postdoctoral Fellowship in Geobiology. Funding for isotopic analyses was provided by the University of Washington Royalty Research Fund and NASA Exobiology grant NNX16AI37G to R.B., as well as by a Paleontological Society student grant to M.A.K.

Author information

Authors and Affiliations

Authors

Contributions

M.A.K., E.E.S., C.A.E.S. and R.B. designed the study. C.A.E.S., V.M.A., B.E., R.S.H., K.R.J., J.K., J.C.M., I.M.M., M.S. and V.V. provided fossil specimens. M.A.K. and E.E.S. conducted the isotopic measurements. M.A.K., E.E.S., C.A.E.S. and R.B. analysed the data. W.H.B. conducted the ASR, with input from M.A.K., E.E.S., C.A.E.S. and R.B. M.A.K. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Michael A. Kipp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Fabien Condamine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 δ15N vs. C/N for all studied units.

(A) Soma flora, (B) Most Formation, (C) Gatuncillo Formation, (D) Chuckanut Formation, (E) Macquarie Harbor Formation, (F) Castle Rock flora, Denver Formation, (G) Comox Formation, Nanaimo Group, (H) Yorkshire flora, Cloughton Formation, (I) Primulaelv Formation, Kap Stewart Group, (J) Lunz flora, Lunz Formation, (K) Thale flora, Lower Keuper (L) Fremouw Formation. Cycad data shown as blue circles; non-cycad data as red crosses. Grey bands denote range of C/N ratios observed in modern cycads23; dashed lines denote range of δ15N values observed in modern cycads23. Fossil cycad foliage predominantly falls within the range of C/N ratios observed in modern plants. Fossil cycad foliage also overwhelmingly overlaps with the C/N ratios of other analysed plants, with one stark exception (Thale flora, panel K). In that case, the lack of δ15N vs. C/N correlation within either cycads or non-cycads suggests that diagenetic processes (which would impart a δ15N vs. C/N correlation) did not appreciably alter the isotopic composition of either group, or create a postdepositional isotopic offset between the two groups. Overall, the C/N data suggest that postdepositional alteration is unlikely to have imparted or obscured the isotopic trends observed across units.

Source data

Extended Data Fig. 2 TN content of fossil over matrix.

(A) Soma flora, (B) Most Formation, (C) Gatuncillo Formation, (D) Chuckanut Formation, (E) Macquarie Habor Formation, (F) Castle Rock flora, Denver Formation, (G) Comox Formation, Nanaimo Group, (H) Yorkshire flora, Cloughton Formation, (I) Primulaelv Formation, Kap Stewart Group, (J) Lunz flora, Lunz Formation, (K) Thale flora, Lower Keuper, (L) Fremouw Formation. Fremouw Formation samples were permineralized and thus did not allow a separate characterization of carbonaceous compression fossil versus matrix. Cycad data shown as blue circles; non-cycad data as red crosses. Dashed lines denote range of δ15N values observed in modern cycads23. Isotopic trends within and between units are not correlated with the N concentration of recovered foliage. Recovered fossil material has on average an order of magnitude more nitrogen than the background matrix, indicating that the isotopic signatures derive from the foliage and not soil organic matter.

Source data

Extended Data Fig. 3 Relative genus richness of Cycadales and Angiospermae.

Lines separately denote genus richness estimated via bootstrap resampled range through genus richness, TRiPS estimated genus richness and Chao1 estimated genus richness. Calculations are described in Methods.

Supplementary information

Reporting Summary

Supplementary Code 1

Analysis of geochemical data.

Supplementary Code 2

Ancestral state reconstruction.

Supplementary Code 3

Analysis of Paleobiology Database.

Supplementary Code 4

Functions required for TRiPS analysis.

Source data

Source Data Extended Data Fig. 1

Elemental and isotopic data.

Source Data Extended Data Fig. 2

Affinity of cycad taxa in Paleobiology Database.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kipp, M.A., Stüeken, E.E., Strömberg, C.A.E. et al. Nitrogen isotopes reveal independent origins of N2-fixing symbiosis in extant cycad lineages. Nat Ecol Evol 8, 57–69 (2024). https://doi.org/10.1038/s41559-023-02251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02251-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing