Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Species-wide genomics of kākāpō provides tools to accelerate recovery

Abstract

The kākāpō is a critically endangered, intensively managed, long-lived nocturnal parrot endemic to Aotearoa New Zealand. We generated and analysed whole-genome sequence data for nearly all individuals living in early 2018 (169 individuals) to generate a high-quality species-wide genetic variant callset. We leverage extensive long-term metadata to quantify genome-wide diversity of the species over time and present new approaches using probabilistic programming, combined with a phenotype dataset spanning five decades, to disentangle phenotypic variance into environmental and genetic effects while quantifying uncertainty in small populations. We find associations for growth, disease susceptibility, clutch size and egg fertility within genic regions previously shown to influence these traits in other species. Finally, we generate breeding values to predict phenotype and illustrate that active management over the past 45 years has maintained both genome-wide diversity and diversity in breeding values and, hence, evolutionary potential. We provide new pathways for informing future conservation management decisions for kākāpō, including prioritizing individuals for translocation and monitoring individuals with poor growth or high disease risk. Overall, by explicitly addressing the challenge of the small sample size, we provide a template for the inclusion of genomic data that will be transformational for species recovery efforts around the globe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modern and historical spread of kākāpō, and pedigree of assayed individuals.
Fig. 2: Circos plot of kākāpō population genomics.

Similar content being viewed by others

Data availability

Genomic reads, variant data and phenotypic data are taonga of Ngāi Tahu and sensitive for the Department of Conservation. Raw and processed data, such as variant files, are available via application to the Aotearoa Genomic Data Repository https://data.agdr.org.nz/.

Code availability

Scripts, workflows, Jupyter notebooks and other methodology resources are available at the GitHub repo for this paper: https://github.com/GenomicsAotearoa/Kakapo or at Zenodo103.

References

  1. Ouborg, N. J., Pertoldi, C., Loeschcke, V., Bijlsma, R. K. & Hedrick, P. W. Conservation genetics in transition to conservation genomics. Trends Genet. 26, 177–187 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Formenti, G. et al. The era of reference genomes in conservation genomics. Trends Ecol. Evol. 37, 197–202 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Kardos, M. et al. The crucial role of genome-wide genetic variation in conservation. Proc. Natl Acad. Sci. USA 118, e2104642118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kardos, M. & Shafer, A. B. A. The peril of gene-targeted conservation. Trends Ecol. Evol. 33, 827–839 (2018).

    Article  PubMed  Google Scholar 

  5. Wright, B. R., Hogg, C. J., McLennan, E. A., Belov, K. & Grueber, C. E. Assessing evolutionary processes over time in a conservation breeding program: a combined approach using molecular data, simulations and pedigree analysis. Biodivers. Conserv. 30, 1011–1029 (2021).

    Article  Google Scholar 

  6. Robinson, J. A. et al. Genomic flatlining in the endangered island fox. Curr. Biol. 26, 1183–1189 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Sherwin, W. B., Murray, N. D., Graves, J. A. M. & Brown, P. R. Measurement of genetic variation in endangered populations: bandicoots (Marsupialia: Peramelidae) as an example. Conserv. Biol. 5, 103–108 (1991).

    Article  Google Scholar 

  8. Mitrovski, P., Hoffmann, A. A., Heinze, D. A. & Weeks, A. R. Rapid loss of genetic variation in an endangered possum. Biol. Lett. 4, 134–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Kirkpatrick, M. & Jarne, P. The effects of a bottleneck on inbreeding depression and the genetic load. Am. Nat. 155, 154–167 (2000).

    Article  PubMed  Google Scholar 

  10. Taylor, R. S., Jensen, E. L., Coltman, D. W., Foote, A. D. & Lamichhaney, S. Seeing the whole picture: what molecular ecology is gaining from whole genomes. Mol. Ecol. 30, 5917–5922 (2021).

    Article  PubMed  Google Scholar 

  11. Williams, G. R. The kakapo (Strigops habrotilus, Gray): a review and reappraisal of a near-extinct species (New Zealand Wildlife Service, 1956).

  12. Lentini, P. E., Stirnemann, I. A., Stojanovic, D., Worthy, T. H. & Stein, J. A. Using fossil records to inform reintroduction of the kakapo as a refugee species. Biol. Conserv. 217, 157–165 (2018).

    Article  Google Scholar 

  13. Karl, B. J. & Best, H. A. Feral cats on Stewart Island; their foods, and their effects on kakapo. N. Z. J. Zool. 9, 287–293 (1982).

    Article  Google Scholar 

  14. Lloyd, B. D. & Powlesland, R. G. The decline of kakapo Strigops habroptilus and attempts at conservation by translocation. Biol. Conserv. 69, 75–85 (1994).

    Article  Google Scholar 

  15. Merton, D. V., Morris, R. B. & Atkinson, I. A. E. Lek behaviour in a parrot: the kakapo Strigops habroptilus of New Zealand. Ibis 126, 277–283 (1984).

    Article  Google Scholar 

  16. Clout, M. N. & Merton, D. V. Saving the kakapo: the conservation of the world’s most peculiar parrot. Bird Conserv. Int. 8, 281–296 (1998).

    Article  Google Scholar 

  17. Elliott, G. P., Merton, D. V. & Jansen, P. W. Intensive management of a critically endangered species: the kakapo. Biol. Conserv. 99, 121–133 (2001).

    Article  Google Scholar 

  18. Ngāi Tahu Claims Settlement Act 1998 No 97 (version as at 1 July 2022), Public Act Contents (New Zealand Legislation, 2022); https://legislation.govt.nz/act/public/1998/0097/latest/DLM429090.html

  19. Savage, J. L., Crane, J. M. S., Team, K. R. & Hemmings, N. Low hatching success in the critically endangered kakapo is driven by early embryo mortality not infertility. Anim. Conserv. 25, 352–360 (2021).

    Article  Google Scholar 

  20. White, K. L., Eason, D. K., Jamieson, I. G. & Robertson, B. C. Evidence of inbreeding depression in the critically endangered parrot, the kakapo. Anim. Conserv. 18, 341–347 (2015).

    Article  Google Scholar 

  21. Bergner, L. M., Jamieson, I. G. & Robertson, B. C. Combining genetic data to identify relatedness among founders in a genetically depauperate parrot, the Kakapo (Strigops habroptilus). Conserv. Genet. 15, 1013–1020 (2014).

    Article  Google Scholar 

  22. Robertson, B. C. The role of genetics in kakapo recovery. Notornis 53, 173 (2006).

    Google Scholar 

  23. Miller, H. C., Lambert, D. M., Millar, C. D., Robertson, B. C. & Minot, E. O. Minisatellite DNA profiling detects lineages and parentage in the endangered kakapo (Strigops habroptilus) despite low microsatellite DNA variation. Conserv. Genet. 4, 265–274 (2003).

    Article  CAS  Google Scholar 

  24. Robertson, B. C., Frauenfelder, N., Eason, D. K., Elliott, G. & Moorhouse, R. Thirty polymorphic microsatellite loci from the critically endangered kakapo (Strigops habroptilus). Mol. Ecol. Resour. 9, 664–666 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dussex, N. et al. Population genomics of the critically endangered kākāpō. Cell 1, 100002 (2021).

    CAS  Google Scholar 

  27. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cai, C. et al. Brassica rapa Genome 2.0: a reference upgrade through sequence re-assembly and gene re-annotation. Mol. Plant 10, 649–651 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Holt, C. et al. Improved genome assembly and annotation for the rock pigeon (Columba livia). G3 Genes Genom. Genet. 8, 1391–1398 (2018).

    Article  CAS  Google Scholar 

  30. Li, Y., Pi, M., Gao, Q., Liu, Z. & Kang, C. Updated annotation of the wild strawberry Fragaria vesca V4 genome. Hortic. Res. 6, 61 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yun, T. et al. Accurate, scalable cohort variant calls using DeepVariant and GLnexus. Bioinformatics 36, 5582–5589 (2020).

    Article  CAS  Google Scholar 

  32. Lin, Y.-L. et al. Comparison of GATK and DeepVariant by trio sequencing. Sci. Rep. 12, 1809 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Supernat, A., Vidarsson, O. V., Steen, V. M. & Stokowy, T. Comparison of three variant callers for human whole genome sequencing. Sci. Rep. 8, 17851 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Pei, S. et al. Benchmarking variant callers in next-generation and third-generation sequencing analysis. Brief. Bioinform. 22, bbaa148 (2021).

    Article  PubMed  Google Scholar 

  36. Galla, S. J. et al. The relevance of pedigrees in the conservation genomics era. Mol. Ecol. 31, 41–54 (2022).

    Article  PubMed  Google Scholar 

  37. Duntsch, L. et al. Polygenic basis for adaptive morphological variation in a threatened Aotearoa | New Zealand bird, the hihi (Notiomystis cincta). Proc. R. Soc. B 287, 20200948 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. John, S. & Stephan, W. Important role of genetic drift in rapid polygenic adaptation. Ecol. Evol. 10, 1278–1287 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Santure, A. W. & Garant, D. Wild GWAS—association mapping in natural populations. Mol. Ecol. Resour. 18, 729–738 (2018).

    Article  PubMed  Google Scholar 

  40. Bosse, M. et al. Recent natural selection causes adaptive evolution of an avian polygenic trait. Science 358, 365–368 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Foster, Y. et al. Genomic signatures of inbreeding in a critically endangered parrot, the kākāpō. G3 Genes Genom. Genet. 11, jkab307 (2021).

    Article  Google Scholar 

  42. Curtin, S. J. et al. Validating genome-wide association candidates controlling quantitative variation in nodulation. Plant Physiol. 173, 921–931 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Renaud, G., Hanghøj, K., Korneliussen, T. S., Willerslev, E. & Orlando, L. Joint estimates of heterozygosity and runs of homozygosity for modern and ancient samples. Genetics 212, 587–614 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 56, 330–338 (1922).

    Article  Google Scholar 

  46. Fisher, R. A. A fuller theory of ‘junctions’ in inbreeding. Heredity 8, 187–197 (1954).

    Article  Google Scholar 

  47. Keller, M. C., Visscher, P. M. & Goddard, M. E. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics 189, 237–249 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, Z. et al. Genetic variations for egg quality of chickens at late laying period revealed by genome-wide association study. Sci. Rep. 8, 10832 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang, L.-C., Ning, Z.-H., Xu, G.-Y., Hou, Z.-C. & Yang, N. Heritabilities and genetic and phenotypic correlations of egg quality traits in brown-egg dwarf layers. Poult. Sci. 84, 1209–1213 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Elliott, G. P. Productivity of kakapo (Strigops habroptilus) on offshore island refuges. Notornis 53, 138–142 (2006).

    Google Scholar 

  52. Cottam, Y., Merton, D. V. & Hendricks, W. Nutrient composition of the diet of parent-raised kakapo nestlings. Notornis 53, 90 (2006).

    Google Scholar 

  53. Biedrzycki, R. J., Sier, A. E., Liu, D., Dreikorn, E. N. & Weeks, D. E. Spinning convincing stories for both true and false association signals. Genet. Epidemiol. 43, 356–364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dash, G. K. et al. in Bioinformatics in Rice Research: Theories and Techniques (eds Gupta, M. K. & Behera, L.) 413–457 https://doi.org/10.1007/978-981-16-3993-7_19 (Springer, 2021).

  55. Haque, M. R., Ansari, S. H., Najmi, A. K. & Ahmad, M. A. Monoterpene phenolic compound thymol prevents high fat diet induced obesity in murine model. Toxicol. Mech. Methods 24, 116–123 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Davydov, E. V. et al. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput. Biol. 6, e1001025 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Huber, C. D., Kim, B. Y. & Lohmueller, K. E. Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution. PLoS Genet. 16, e1008827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. García-Dorado, A. & Caballero, A. Neutral genetic diversity as a useful tool for conservation biology. Conserv. Genet. 22, 541–545 (2021).

    Article  Google Scholar 

  59. Bertorelle, G. et al. Genetic load: genomic estimates and applications in non-model animals. Nat. Rev. Genet. 23, 492–503 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Mathur, S. & DeWoody, J. A. Genetic load has potential in large populations but is realized in small inbred populations. Evol. Appl. 14, 1540–1557 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Andrews, S. et al. FastQC: A Quality Control Tool for High Throughput Sequence Data (Babraham Bioinformatics, 2010); https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  64. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv https://doi.org/10.48550/arXiv.1303.3997 (2013).

  66. Danecek, P. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Van der Auwera, G. A. & O’Connor, B. D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (O’Reilly Media, 2020).

  68. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Narasimhan, V. et al. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 32, 1749–1751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Li, H. & Ralph, P. Local PCA shows how the effect of population structure differs along the genome. Genetics 211, 289–304 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Guhlin, J. & Ralph, P. jguhlin/lostruct-py: 0.0.4. Zenodo https://doi.org/10.5281/zenodo.4001195 (2020).

  73. scikit-bio Development Team. scikit-bio: a bioinformatics library for data scientists, students, and developers. GitHub https://github.com/biocore/scikit-bio/issues/1691 (2020).

  74. Whalen, A., Ros-Freixedes, R., Wilson, D. L., Gorjanc, G. & Hickey, J. M. Hybrid peeling for fast and accurate calling, phasing, and imputation with sequence data of any coverage in pedigrees. Genet. Sel. Evol. 50, 67 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Killick, R., Haynes, K. & Eckley, I. changepoint: an R package for changepoint analysis. J. Stat. Soft. 58, 1–19 (2014).

  76. Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107, 1590–1598 (2012).

    Article  CAS  Google Scholar 

  77. Hedrick, P. W. & Lacy, R. C. Measuring relatedness between inbred individuals. J. Hered. 106, 20–25 (2015).

    Article  PubMed  Google Scholar 

  78. Waples, R. K., Albrechtsen, A. & Moltke, I. Allele frequency-free inference of close familial relationships from genotypes or low-depth sequencing data. Mol. Ecol. 28, 35–48 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dodds, K. G. et al. Construction of relatedness matrices using genotyping-by-sequencing data. BMC Genomics 16, 1047 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Galla, S. J. et al. A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: implications for conservation breeding programmes worldwide. Evol. Appl. 13, 991–1008 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang, J. Parentage and sibship exclusions: higher statistical power with more family members. Heredity 99, 205–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Hauser, S. S., Galla, S. J., Putnam, A. S., Steeves, T. E. & Latch, E. K. Comparing genome-based estimates of relatedness for use in pedigree-based conservation management. Mol. Ecol. Resour. 22, 2546–2558 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Pedregosa, F. et al. scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  84. Eason, D. K. & Moorhouse, R. J. Hand-rearing kakapo (Strigops habroptilus), 1997–2005. Notornis 53, 116 (2006).

    Google Scholar 

  85. von Hurst, P. R., Moorhouse, R. J. & Raubenheimer, D. Preferred natural food of breeding kakapo is a high value source of calcium and vitamin D. J. Steroid Biochem. Mol. Biol. 164, 177–179 (2016).

    Article  Google Scholar 

  86. TensorFlow Developers. TensorFlow. Zenodo https://doi.org/10.5281/zenodo.4960227 (2021).

  87. TensorFlow Developers. TensorFlow (v2.8.0). Zenodo https://doi.org/10.5281/zenodo.5949125 (2022).

  88. Crispim, A. C. et al. Multi-trait GWAS and new candidate genes annotation for growth curve parameters in Brahman cattle. PLoS ONE 10, e0139906 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Winsor, C. P. The Gompertz curve as a growth curve. Proc. Natl Acad. Sci. USA 18, 1–8 (1932).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kluyver, T. et al. Jupyter notebooks—a publishing format for reproducible computational workflows. Elpub 2016, 87–90 (2016).

    Google Scholar 

  91. Habier, D., Fernando, R. L., Kizilkaya, K. & Garrick, D. J. Extension of the Bayesian alphabet for genomic selection. BMC Bioinform. 12, 186 (2011).

    Article  Google Scholar 

  92. Legarra, A., Robert-Granié, C., Croiseau, P., Guillaume, F. & Fritz, S. Improved Lasso for genomic selection. Genet. Res. 93, 77–87 (2011).

    Article  CAS  Google Scholar 

  93. Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yin, L. L., Zhang, H. H., Li, X. Y., Zhao, S. H. & Liu X.L. hibayes: an R package to fit individual-level, summary-level and single-step Bayesian regression models for genomic prediction and genome-wide association studies. Preprint at bioRxiv https://doi.org/10.1101/2022.02.12.480230 (2022).

  95. Moser, G. et al. Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model. PLoS Genet. 11, e1004969 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bradbury, P. J. et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Endelman, J. B. & Jannink, J.-L. Shrinkage estimation of the realized relationship matrix. G3 Genes Genom. Genet. 2, 1405–1413 (2012).

    Article  Google Scholar 

  99. Klopfenstein, D. V. et al. GOATOOLS: a Python library for Gene Ontology analyses. Sci. Rep. 8, 10872 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Guhlin, J., et al. GenomicsAotearoa/Kakapo: publication scripts and workflows. Zenodo https://doi.org/10.5281/zenodo.8015520 (2023).

  104. Taylor, H. R. The use and abuse of genetic marker-based estimates of relatedness and inbreeding. Ecol. Evol. 5, 3140–3150 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lacy, R. C., Ballou, J. D. & Pollak, J. P. PMx: software package for demographic and genetic analysis and management of pedigreed populations. Methods Ecol. Evol. 3, 433–437 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Kākāpō125+ Project led by the New Zealand Department of Conservation (DOC) in partnership with Te Rūnanga o Ngāi Tahu (TRONT). We acknowledge the incredible long-term support and vision from Ngāi Tahu, DOC staff, including office-based support staff, and the many volunteers, veterinarians and others who have contributed to the conservation of this taonga species. Our thanks to the Genetic Rescue Foundation, University of Otago, New Zealand Genomics Limited, Rockefeller Institute, Duke University, Science Exchange and Experiment.com for the generation and availability of the short-read data used in this study. B.C.R. acknowledges support from the Department of Zoology, University of Otago, for funding sample preparation. We extend many thanks to Genomics Aotearoa for financial support of the project including for J.G., J.W., E.K., N.J.G., T.E.S., A.W.S. and P.K.D. We are very grateful to New Zealand eScience Infrastructure for computational resources and support, especially for assistance with data management, transfer and storage, and development and hosting of the AGDR (https://data.agdr.org.nz/), with particular thanks to Dinindu Senanayake.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Conceptualization: all authors; methodology: J.G., M.F.L.L., E.K., D.W., P.J.B., S.J.G., A.W.S. and J.W.; software and formal analysis: J.G., M.F.L.L., E.K., D.W., P.J.B., S.J.G. and M.P.C.; validation: L.U., Y.F., D.W., P.J.B. and M.P.C.; investigation, resources and data curation: A.D., L.R.U., D.E., D.V., Kākāpō Recovery Team, L.U., B.C.R., F.E.R., D.W., P.J.B., M.P.C. and T.D.; writing—original draft: J.G.; writing—review and editing: J.G., P.K.D., M.F.L.L., A.W.S., L.U., E.D.J., Y.F., T.E.S., E.K., S.J.G., A.D., L.R.U., J.W. and N.J.G; visualization: J.G., E.K., M.F.L.L. and S.J.G.; supervision: T.E.S., A.W.S. and P.K.D.; project administration: J.G. and P.K.D.; funding acquisition: P.K.D., A.W.S., T.E.S., B.C.R., J.T.H. and E.D.J.

Corresponding author

Correspondence to Peter K. Dearden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Rebecca Taylor, Cock van Oosterhout and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Plots of breeding values for Richard Henry lineages vs non Richard Henry lineages.

Violin plot of all calculated Breeding Values for each trait, with individual breeding values represented as points on the left of the distributions. Green points and distributions represent all birds exclusive of Richard Henry and his lineage, while tan represents Richard Henry and lineage scores (n = 8). Aspergillosis Risk is a risk score derived from case-control (see Supplemental Materials: Aspergillosis Susceptibility for details).

Extended Data Table 1 Relevant groupings for population statistics in kākāpō

Supplementary information

Supplementary Information

Supplementary text including Supplementary Figs. 1–74.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–25.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guhlin, J., Le Lec, M.F., Wold, J. et al. Species-wide genomics of kākāpō provides tools to accelerate recovery. Nat Ecol Evol 7, 1693–1705 (2023). https://doi.org/10.1038/s41559-023-02165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02165-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing