Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Evolutionary determinants of curability in cancer

Abstract

The emergence of drug-resistant cells, most of which have a mutated TP53 gene, prevents curative treatment in most advanced and common metastatic cancers of adults. Yet, a few, rarer malignancies, all of which are TP53 wild type, have high cure rates. In this Perspective, we discuss how common features of curable cancers offer insights into the evolutionary and developmental determinants of drug resistance. Acquired loss of TP53 protein function is the most common genetic change in cancer. This probably reflects positive selection in the context of strong ecosystem pressures including microenvironmental hypoxia. Loss of TP53’s functions results in multiple fitness benefits and enhanced evolvability of cancer cells. TP53-null cells survive apoptosis, and tolerate potent oncogenic signalling, DNA damage and genetic instability. In addition, critically, they provide an expanded pool of self-renewing, or stem, cells, the primary units of evolutionary selection in cancer, making subsequent adaptation to therapeutic challenge by drug resistance highly probable. The exceptional malignancies that are curable, including the common genetic subtype of childhood acute lymphoblastic leukaemia and testicular seminoma, differ from the common adult cancers in originating prenatally from embryonic or fetal cells that are developmentally primed for TP53-dependent apoptosis. Plus, they have other genetic and phenotypic features that enable dissemination without exposure to selective pressures for TP53 loss, retaining their intrinsic drug hypersensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of our model of the biological determinants of curability or intransigence in cancer.
Fig. 2: Imaging hypoxia, angiogenesis and cell loss or survival in curable and intransigent cancers.
Fig. 3: Natural history of ‘curable’ B-cell precursor childhood ALL.

Similar content being viewed by others

References

  1. Thun, M. J., DeLancey, J. O., Center, M. M., Jemal, A. & Ward, E. M. The global burden of cancer: priorities for prevention. Carcinogenesis 31, 100–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  3. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gatenby, R. A. & Gillies, R. J. A microenvironmental model of carcinogenesis. Nat. Rev. Cancer 8, 56–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Anderson, A. R. A., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–915 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. John, S. & Broggio, J. Stage 4 cancer survival data. Office for National Statistics, https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancersurvivalinengland/latest (2019).

  7. McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huijben, S. et al. Aggressive chemotherapy and the selection of drug resistant pathogens. PLoS Pathog. 9, e1003578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Galhardo, R. S., Hastings, P. J. & Rosenberg, S. M. Mutation as a stress response and the regulation of evolvability. Crit. Rev. Biochem. Mol. Biol. 42, 399–435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Marine, J.-C., Dawson, S.-J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Kitano, H. Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Kreso, A. & Dick, J. E. Evolution of the cancer stem cell model. Cell Stem Cell 14, 275–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Greaves, M. Evolutionary determinants of cancer. Cancer Discov. 5, 806–820 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shlush, L. I. et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 547, 104–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Greaves, M. Cancer stem cells as ‘units of selection’. Evol. Appl 6, 102–108 (2013).

    Article  PubMed  Google Scholar 

  19. Fong, C. Y. et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 525, 538–542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chaidos, A. et al. Clinical drug resistance linked to interconvertible phenotypic and functional states of tumor-propagating cells in multiple myeloma. Blood 121, 318–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Levine, A. J. & Oren, M. The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer 9, 749–758 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berlanga, P. et al. The European MAPPYACTS Trial: precision medicine program in pediatric and adolescent patients with recurrent malignancies. Cancer Discov. 12, 1266–1281 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stracquadanio, G. et al. The importance of p53 pathway genetics in inherited and somatic cancer genomes. Nat. Rev. Cancer 16, 251–265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R. & Lane, D. P. Awakening guardian angels: drugging the p53 pathway. Nat. Rev. Cancer 9, 862–873 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Amadou, A., Achatz, M. I. W. & Hainaut, P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li–Fraumeni syndrome. Curr. Opin. Oncol. 30, 23–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Abegglen, L. M. et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. J. Am. Med. Assoc. 314, 1850–1860 (2015).

    Article  CAS  Google Scholar 

  30. Lu, W.-J., Amatruda, J. F. & Abrams, J. M. p53 ancestry: gazing through an evolutionary lens. Nat. Rev. Cancer 9, 758–762 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Bieging, K. T., Mello, S. S. & Attardi, L. D. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 14, 359–370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vousden, K. H. Activation of the p53 tumor suppressor protein. Biochim. Biophys. Acta 1602, 47–59 (2002).

  33. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Muller, P. A. J. & Vousden, K. H. p53 mutations in cancer. Nat. Cell Biol. 15, 2–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Losos, J. Improbable Destinies: How Predictable is Evolution? (Penguin, 2018).

  36. Wong, T. N. et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518, 552–555 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Bristow, R. G. & Hill, R. P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat. Rev. Cancer 8, 180–192 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Fang, J. S., Gillies, R. D. & Gatenby, R. A. Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol. 18, 330–337 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Pan, Y., Oprysko, P. R., Asham, A. M., Koch, C. J. & Simon, M. C. p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment. Oncogene 23, 4975–4983 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. De Palma, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017).

    Article  PubMed  Google Scholar 

  42. Lugano, R., Ramachandran, M. & Dimberg, A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 77, 1745–1770 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Lopci, E. et al. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am. J. Nucl. Med Mol. Imaging 4, 365–384 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. O’Connor, J. P. B., Robinson, S. P. & Waterton, J. C. Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI. Br. J. Radiol. 92, 20180642 (2019).

    Article  PubMed  Google Scholar 

  45. Bhandari, V. et al. Molecular landmarks of tumor hypoxia across cancer types. Nat. Genet. 51, 308–318 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Walsh, J. C. et al. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid. Redox Signal 21, 1516–1554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zschaeck, S. et al. Individual patient data meta-analysis of FMISO and FAZA hypoxia PET scans from head and neck cancer patients undergoing definitive radio-chemotherapy. Radiother. Oncol. 149, 189–196 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Höckel, M. et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 56, 4509–4515 (1996).

    PubMed  Google Scholar 

  49. Bhandari, V. et al. Divergent mutational processes distinguish hypoxic and normoxic tumours. Nat. Commun. 11, 737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Graham, N. A. et al. Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures. Mol. Syst. Biol. 13, 914 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bartesaghi, S. et al. Inhibition of oxidative metabolism leads to p53 genetic inactivation and transformation in neural stem cells. Proc. Natl Acad. Sci. USA 112, 1059–1064 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, Y., Yan, W. & Chen, X. Mutant p53 disrupts MCF-10A cell polarity in three-dimensional culture via epithelial-to-mesenchymal transitions. J. Biol. Chem. 286, 16218–16228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Greaves, M. Does everyone develop covert cancer? Nat. Rev. Cancer 14, 209–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Meslin, F., Thiery, J., Richon, C., Jalil, A. & Chouaib, S. Granzyme B-induced cell death involves induction of p53 tumor suppressor gene and its activation in tumor target cells. J. Biol. Chem. 282, 32991–32999 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Shouval, R. et al. Impact of TP53 genomic alterations in large B-cell lymphoma treated with CD19-chimeric antigen receptor T-cell therapy. J. Clin. Oncol. 40, 369–381 (2022).

  57. Sarkisian, C. J. et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol. 9, 493–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Junttila, M. R. & Evan, G. I. p53—a Jack of all trades but master of none. Nat. Rev. Cancer 9, 821–829 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Baslan, T. et al. Ordered and deterministic cancer genome evolution after p53 loss. Nature 608, 795–802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McPherson, A. et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, Y. et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4, 37–48 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cicalese, A. et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138, 1083–1095 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Zhao, T. & Xu, Y. p53 and stem cells: new developments and new concerns. Trends Cell Biol. 20, 170–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Mizuno, H., Spike, B. T., Wahl, G. M. & Levine, A. J. Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures. Proc. Natl Acad. Sci. USA 107, 22745–22750 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, S. et al. Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway. Nat. Commun. 10, 5649 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mohyeldin, A., Garzón-Muvdi, T. & Quiñones-Hinojosa, A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Smith, B. A. et al. A human adult stem cell signature marks aggressive variants across epithelial cancers. Cell Rep. 24, 3353–3366.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pece, S. et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140, 62–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Merlos-Suárez, A. et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8, 511–524 (2011).

    Article  PubMed  Google Scholar 

  73. Eppert, K. et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat. Med. 17, 1086–1093 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Samanta, D., Gilkes, D. M., Chaturvedi, P., Xiang, L. & Semenza, G. L. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc. Natl Acad. Sci. USA 111, E5429–E5438 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Payne, J. L. & Wagner, A. The causes of evolvability and their evolution. Nat. Rev. Genet. 20, 24–38 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Gutekunst, M. et al. p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS ONE 6, e19198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Visvader, J. E. Cells of origin in cancer. Nature 469, 314–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Greaves, M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer 18, 471–484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marshall, G. M. et al. The prenatal origins of cancer. Nat. Rev. Cancer 14, 277–289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gudkov, A. V. & Komarova, E. A. The role of p53 in determining sensitivity to radiotherapy. Nat. Rev. Cancer 3, 117–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Sarosiek, K. A. et al. Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics. Cancer Cell 31, 142–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 8, 275–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, G. et al. p53 pathway is involved in cell competition during mouse embryogenesis. Proc. Natl Acad. Sci. USA 114, 498–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Oosterhuis, J. W. & Looijenga, L. H. J. Human germ cell tumours from a developmental perspective. Nat. Rev. Cancer 19, 522–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Runyan, C. et al. Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 133, 4861–4869 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Braun, R. E. Every sperm is sacred—or is it? Nat. Genet. 18, 202–204 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Masters, J. R. W. & Köberle, B. Curing metastatic cancer: lessons from testicular germ-cell tumours. Nat. Rev. Cancer 3, 517–525 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Awuah, S. G., Riddell, I. A. & Lippard, S. J. Repair shielding of platinum–DNA lesions in testicular germ cell tumors by high-mobility group box protein 4 imparts cisplatin hypersensitivity. Proc. Natl Acad. Sci. USA 114, 950–955 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Usanova, S. et al. Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression. Mol. Cancer 9, 248 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Greaves, M. F. & Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nat. Rev. Cancer 3, 639–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Böiers, C. et al. A human IPS model implicates embryonic B-myeloid fate restriction as developmental susceptibility to B acute lymphoblastic leukemia-associated ETV6-RUNX1. Dev. Cell 44, 362–377.e7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kersey, J. H. Fifty years of studies of the biology and therapy of childhood leukemia. Blood 90, 4243–4251 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Eswaran, J. et al. The pre-B-cell receptor checkpoint in acute lymphoblastic leukaemia. Leukemia 29, 1623–1631 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Greaves, M. & Hughes, W. Cancer cell transmission via the placenta. Evol. Med. Public Health 2018, 106–115 (2018).

  96. Seckl, M. J., Sebire, N. J. & Berkowitz, R. S. Gestational trophoblastic disease. Lancet 376, 717–729 (2010).

    Article  PubMed  Google Scholar 

  97. Shih, I.-M. & Kuo, K.-T. Power of the eternal youth: nanog expression in the gestational choriocarcinoma. Am. J. Pathol. 173, 911–914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stovall, T. G., Ling, F. W., Gray, L. A., Carson, S. A. & Buster, J. E. Methotrexate treatment of unruptured ectopic pregnancy: a report of 100 cases. Obstet. Gynecol. 77, 749–753 (1991).

    CAS  PubMed  Google Scholar 

  99. Coorens, T. H. H. et al. Embryonal precursors of Wilms tumor. Science 366, 1247–1251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Spreafico, F. et al. Wilms tumour. Nat. Rev. Dis. Prim. 7, 75 (2021).

    Article  PubMed  Google Scholar 

  101. Savage, P. Chemotherapy curability in leukemia, lymphoma, germ cell tumors and gestational malignancies: a reflection of the unique physiology of their cells of origin. Front. Genet 11, 426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Perez-Atayde, A. R. et al. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am. J. Pathol. 150, 815–821 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Donato, D. P., Johnson, M. T., Yang, X. J. & Zynger, D. L. Expression of carbonic anhydrase IX in genitourinary and adrenal tumours. Histopathology 59, 1229–1239 (2011).

    Article  PubMed  Google Scholar 

  104. Huang, D. Y. & Sidhu, P. S. Focal testicular lesions: colour Doppler ultrasound, contrast-enhanced ultrasound and tissue elastography as adjuvants to the diagnosis. Br. J. Radiol. 85, S41–S53 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kalavska, K. et al. Prognostic value of intratumoral carbonic anhydrase IX expression in testicular germ cell tumors. Oncol. Lett. 13, 2177–2185 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  CAS  Google Scholar 

  108. Brady, S. W. et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat. Genet. 54, 1376–1389 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moorman, A. V. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica 101, 407–416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ford, A. M., Colman, S. & Greaves, M. Covert pre-leukaemic clones in healthy co-twins of patients with childhood acute lymphoblastic leukaemia. Leukemia https://doi.org/10.1038/s41375-022-01756-1 (2022).

  111. Mori, H. et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc. Natl Acad. Sci. USA 99, 8242–8247 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Paulsson, K. et al. The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat. Genet. 47, 672–676 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Meyer, L. H. et al. Early relapse in ALL is identified by time to leukemia in NOD/SCID mice and is characterized by a gene signature involving survival pathways. Cancer Cell 19, 206–217 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Rehe, K. et al. Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations. EMBO Mol. Med. 5, 38–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Savage, P. et al. A case of intraplacental gestational choriocarcinoma; characterised by the methylation pattern of the early placenta and an absence of driver mutations. BMC Cancer 19, 744 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Litchfield, K. et al. Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours. Nat. Commun. 6, 5973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Taylor-Weiner, A. et al. Genomic evolution and chemoresistance in germ-cell tumours. Nature 540, 114–118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Al-Lazikani, B., Banerji, U. & Workman, P. Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30, 679–692 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, J., Cunningham, J., Brown, J. & Gatenby, R. Evolution-based mathematical models significantly prolong response to abiraterone in metastatic castrate-resistant prostate cancer and identify strategies to further improve outcomes. eLife 11, e76284 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Acar, A. et al. Exploiting evolutionary steering to induce collateral drug sensitivity in cancer. Nat. Commun. 11, 1923 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Perspective is dedicated to the memory of Dr Donald Pinkel (1926–2022) pioneer of curative chemotherapy for children with leukaemia (Supplementary Information and Supplementary Fig. 2). The authors are grateful for funding received from the Wood family—in memory of Artemis. We gratefully acknowledge the FAZA images courtesy of D Vriens, Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands and Holland Proton Therapy Centre (HollandPTC), Delft, the Netherlands and the bone marrow images with microvessels courtesy of S. E. Sallan, Dana-Farber Cancer Institute and Boston Children’s Hospital, Boston, USA. We also thank A. Moorman for kindly providing Supplementary Fig. 1 (previously unpublished data). We are grateful to J. Vormoor, A. Roy, T. Graham and A. Borkhardt for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mel Greaves.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Subhayan Chattopadhyay, Wei Gu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Text/Information on childhood ALL curability and on TP53, self-renewal and the cure of APML, Table 1 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansur, M.B., deSouza, N.M., Natrajan, R. et al. Evolutionary determinants of curability in cancer. Nat Ecol Evol 7, 1761–1770 (2023). https://doi.org/10.1038/s41559-023-02159-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02159-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer