Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrating evolutionary dynamics into cancer therapy

Abstract

Many effective drugs for metastatic and/or advanced-stage cancers have been developed over the past decade, although the evolution of resistance remains the major barrier to disease control or cure. In large, diverse populations such as the cells that compose metastatic cancers, the emergence of cells that are resistant or that can quickly develop resistance is virtually inevitable and most likely cannot be prevented. However, clinically significant resistance occurs only when the pre-existing resistant phenotypes are able to proliferate extensively, a process governed by eco-evolutionary dynamics. Attempts to disrupt the molecular mechanisms of resistance have generally been unsuccessful in clinical practice. In this Review, we focus on the Darwinian processes driving the eco-evolutionary dynamics of treatment-resistant cancer populations. We describe a variety of evolutionarily informed strategies designed to increase the probability of disease control or cure by anticipating and steering the evolutionary dynamics of acquired resistance.

Key points

  • Despite the increasing numbers of effective agents for treating metastatic cancers, evolution of resistance remains the fundamental barrier to cure and long-term disease control.

  • Efforts to overcome resistance by blocking the molecular machinery of resistance have had little clinical success, probably because many alternative evolutionary resistance pathways are accessible to cancer cells.

  • Resistant cells are almost inevitably present in the large heterogeneous populations of metastatic cancers, and the subsequent fates of those cells (proliferation, quiescence or death) are governed by evolutionary forces.

  • Adaptive therapy cycles the application of treatment to synchronize with patient-specific intratumoural evolutionary dynamics to suppress proliferation of resistant cells and prolong response to treatment.

  • Extinction therapy involves the aggressive application of new perturbations (second strikes) to the resistant cells following the initial (first strike) therapy to exploit the vulnerabilities of small populations with the explicit goal of cure.

  • Clinical trial designs based on evolutionary mathematical models enable the detailed evaluation of outcomes in individual patients, thus promoting an understanding of why the trial failed or succeeded and providing guidance for new strategies designed to optimize patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolutionary strategy for tumour control.
Fig. 2: Evolutionary strategies for cure, based on the dynamics of anthropogenic extinctions.

Similar content being viewed by others

References

  1. Strebhardt, K. & Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 8, 473–480 (2008).

    CAS  PubMed  Google Scholar 

  2. Simon, R. & Norton, L. The Norton-Simon hypothesis: designing more effective and less toxic chemotherapeutic regimens. Nat. Clin. Pract. Oncol. 3, 406–407 (2006).

    PubMed  Google Scholar 

  3. Bayat Mokhtari, R. et al. Combination therapy in combating cancer. Oncotarget 8, 38022–38043 (2017).

    PubMed  Google Scholar 

  4. DeVita, V. T. Jr. & Chu, E. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653 (2008).

    CAS  PubMed  Google Scholar 

  5. Lippman, M. E. High-dose chemotherapy plus autologous bone marrow transplantation for metastatic breast cancer. N. Engl. J. Med. 342, 1119–1120 (2000).

    CAS  PubMed  Google Scholar 

  6. Al Hamed, R., Bazarbachi, A. H., Malard, F., Harousseau, J. L. & Mohty, M. Current status of autologous stem cell transplantation for multiple myeloma. Blood Cancer J. 9, 44 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Fernandez, H. F. et al. Anthracycline dose intensification in acute myeloid leukemia. N. Engl. J. Med. 361, 1249–1259 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bregni, M., Badoglio, M., Pedrazzoli, P. & Lanza, F. Is allogeneic transplant for solid tumors still alive? Bone Marrow Transpl. 51, 751–752 (2016).

    CAS  Google Scholar 

  9. Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 299–309 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Diaz, L. A. Jr. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mostaghel, E. A. et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin. Cancer Res. 17, 5913–5925 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kmetova Sivonova, M. et al. The role of CYP17A1 in prostate cancer development: structure, function, mechanism of action, genetic variations and its inhibition. Gen. Physiol. Biophys. 36, 487–499 (2017).

    PubMed  Google Scholar 

  13. Brown, J. S., Cunningham, J. J. & Gatenby, R. A. Aggregation effects and population-based dynamics as a source of therapy resistance in cancer. IEEE Trans. Biomed. Eng. 64, 512–518 (2017).

    PubMed  Google Scholar 

  14. Labadie, B. W., Bao, R., Luke, J. J. & Reimagining, I. D. O. Pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan-kynurenine-aryl hydrocarbon axis. Clin. Cancer Res. 25, 1462–1471 (2019).

    CAS  PubMed  Google Scholar 

  15. Chen, J. et al. HIF-1alpha inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein. PLoS ONE 9, e98882 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Coley, H. M. Overcoming multidrug resistance in cancer: clinical studies of P-glycoprotein inhibitors. Methods Mol. Biol. 596, 341–358 (2010).

    CAS  PubMed  Google Scholar 

  17. Baer, M. R. et al. A phase 3 study of the multidruig resistance modulator PSC-833 in Previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B study 9720. Blood 100, 1224–1232 (2002).

    CAS  PubMed  Google Scholar 

  18. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

    CAS  PubMed  Google Scholar 

  19. Aktipis, C. A., Kwan, V. S., Johnson, K. A., Neuberg, S. L. & Maley, C. C. Overlooking evolution: a systematic analysis of cancer relapse and therapeutic resistance research. PLoS ONE 6, e26100 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. Heikamp, E. B. & Pui, C. H. Next-Generation evaluation and treatment of pediatric acute lymphoblastic leukemia. J. Pediatr. 203, 14–24 e12 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Pui, C. H. et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J. Clin. Oncol. 33, 2938–2948 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Terwilliger, T. & Abdul-Hay, M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 7, e577 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    CAS  PubMed  Google Scholar 

  24. Gatenby, R. A., Gillies, R. J. & Brown, J. S. Of cancer and cave fish. Nat. Rev. Cancer 11, 237–238 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, Y. et al. The relationship between early embryo development and tumourigenesis. J. Cell Mol. Med. 14, 2697–2701 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Dashwood, R. H. Xenobiotic metabolism relevance to cancer. J. Nutr. 136, 2681S–2682S (2006).

    CAS  PubMed  Google Scholar 

  27. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med. 3, 177–182 (1997).

    CAS  PubMed  Google Scholar 

  29. Mullon, C. D., Wakano, J. Y. & Ohtsuki, H. Evolutionary feedbacks between genes and their extended effects under limited gene flow and biased ecological inheritance. Preprint at bioRxiv https://doi.org/10.1101/2020.03.10.985671 (2020).

    Article  Google Scholar 

  30. Archetti, M. & Pienta, K. J. Cooperation among cancer cells: applying game theory to cancer. Nat. Rev. Cancer 19, 110–117 (2019).

    CAS  PubMed  Google Scholar 

  31. Stankova, K., Brown, J. S., Dalton, W. S. & Gatenby, R. A. Optimizing cancer treatment using game theory: a review. JAMA Oncol. 5, 96–103 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. Stackelberg, H. V., Bazin, D., Urch, L. & Hill, R. Market Structure and Equilibrium. (Springer, 2011).

  33. Luh, P. B., C., S.-C. & Chang, T.-S. Solutions and properties of multi-stage Stackelberg games. Automatica 20, 251–256 (1984).

    Google Scholar 

  34. Shen, F. et al. Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J. Pharmacol. Exp. Ther. 324, 95–102 (2008).

    CAS  PubMed  Google Scholar 

  35. Gatenby, R. A., Cunningham, J. J. & Brown, J. S. Evolutionary triage governs fitness in driver and passenger mutations and suggests targeting never mutations. Nat. Commun. 5, 5499 (2014).

    CAS  PubMed  Google Scholar 

  36. Chmielecki, J. et al. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci. Transl Med. 3, 90ra59 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cunningham, J. J. A call for integrated metastatic management. Nat. Ecol. Evol. 3, 996–998 (2019).

    PubMed  Google Scholar 

  38. Hussain, M. et al. Intermittent versus continuous androgen deprivation in prostate cancer. N. Engl. J. Med. 368, 1314–1325 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Crook, J. M. et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N. Engl. J. Med. 367, 895–903 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gatenby, R. A. A change of strategy in the war on cancer. Nature 459, 508–509 (2009).

    CAS  PubMed  Google Scholar 

  41. Gatenby, R. Perspective: Finding cancer’s first principles. Nature 491, S55 (2012).

    PubMed  Google Scholar 

  42. Cunningham, J. J., Gatenby, R. A. & Brown, J. S. Evolutionary dynamics in cancer therapy. Mol. Pharm. 8, 2094–2100 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Enriquez-Navas, P. M. et al. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl Med. 8, 327ra324 (2016).

    Google Scholar 

  45. Gatenby, R. & Brown, J. The evolution and ecology of resistance in cancer therapy. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a033415 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang, J., Cunningham, J. J., Brown, J. S. & Gatenby, R. A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 8, 1816 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Cunningham, J. J., Brown, J. S., Gatenby, R. A. & Stankova, K. Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer. J. Theor. Biol. 459, 67–78 (2018).

    CAS  PubMed  Google Scholar 

  48. Dong, Z. et al. Organ-specific modulation of steady-state mdr gene expression and drug resistance in murine colon cancer cells. J. Natl Cancer Inst. 86, 913–920 (1994).

    CAS  PubMed  Google Scholar 

  49. Abolhoda, A. et al. Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin. Cancer Res. 5, 3352–3356 (1999).

    CAS  PubMed  Google Scholar 

  50. Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the Rosetta stone of therapy resistance. Cancer Cell 37, 471–484 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Maley, C. C., Reid, B. J. & Forrest, S. Cancer prevention strategies that address the evolutionary dynamics of neoplastic cells: simulating benign cell boosters and selection for chemosensitivity. Cancer Epidemiol. Biomarkers Prev. 13, 1375–1384 (2004).

    PubMed  Google Scholar 

  52. Basanta, D. & Anderson, A. R. A. Exploiting ecological principles to better understand cancer progression and treatment. Interface Focus https://doi.org/10.1098/rsfs.2013.0020 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schweizer, M. T. et al. Effect of bipolar androgen therapy for asymptomatic men with castration-resistant prostate cancer: results from a pilot clinical study. Sci. Transl Med. 7, 269ra262 (2015).

    Google Scholar 

  54. Basanta, D., Gatenby, R. A. & Anderson, A. R. Exploiting evolution to treat drug resistance: combination therapy and the double bind. Mol. Pharm. 9, 914–921 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gatenby, R. A., Brown, J. & Vincent, T. Lessons from applied ecology: cancer control using an evolutionary double bind. Cancer Res. 69, 7499–7502 (2009).

    CAS  PubMed  Google Scholar 

  56. Acar, A. et al. Exploiting evolutionary herding to control drug resistance in cancer. Preprint at bioRxiv https://doi.org/10.1101/566950 (2019).

    Article  Google Scholar 

  57. Antonia, S. J. et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin. Cancer Res. 12, 878–88 (2006).

    CAS  PubMed  Google Scholar 

  58. Hardin, G. The tragedy of the commons. The population problem has no technical solution; it requires a fundamental extension in morality. Science 162, 1243–1248 (1968).

    CAS  PubMed  Google Scholar 

  59. Archetti, M. Evolutionary game theory of growth factor production: implications for tumour heterogeneity and resistance to therapies. Br. J. Cancer 109, 1056–1062 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Archetti, M. Evolutionarily stable anti-cancer therapies by autologous cell defection. Evol. Med. Public Health 2013, 161–172 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. Archetti, M., Ferraro, D. A. & Christofori, G. Heterogeneity for IGF-II production maintained by public goods dynamics in neuroendocrine pancreatic cancer. Proc. Natl Acad. Sci. USA 112, 1833–1838 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Montgomery, R. B. et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. You, L. et al. Spatial vs. non-spatial eco-evolutionary dynamics in a tumor growth model. J. Theor. Biol. 435, 78–97 (2017).

    PubMed  Google Scholar 

  64. Gallaher, J. A., Enriquez-Navas, P. M., Luddy, K. A., Gatenby, R. A. & Anderson, A. R. A. Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies. Cancer Res. 78, 2127–2139 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Walther, V. et al. Can oncology recapitulate paleontology? Lessons from species extinctions. Nat. Rev. Clin. Oncol. 12, 273–285 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer. Nat. Rev. Cancer 14, 371–380 (2014).

    CAS  PubMed  Google Scholar 

  67. Hull, P. Life in the Aftermath of Mass Extinctions. Curr. Biol. 25, R941–R952 (2015).

    CAS  PubMed  Google Scholar 

  68. Otto, S. P. Adaptation, speciation and extinction in the Anthropocene. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2018.2047 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Raup, D. M. Extinction: Bad Genes or Bad Luck? (W.W. Norton, 1991).

  70. Armas, O. A. et al. Clinical and pathobiological effects of neoadjuvant total androgen ablation therapy on clinically localized prostatic adenocarcinoma. Am. J. Surg. Pathol. 18, 979–991 (1994).

    CAS  PubMed  Google Scholar 

  71. Fagan, W. F. & Holmes, E. E. Quantifying the extinction vortex. Ecol. Lett. 9, 51–60 (2006).

    PubMed  Google Scholar 

  72. Lynch, M., Conery, J. & Burger, R. Mutational meltdowns in sexual populations. Evolution 49, 1067–1080 (1995).

    PubMed  Google Scholar 

  73. Normark, B. B. & Moran, N. A. Testing for the accumulation of deleterious mutations in asexual eukaryote genomes using molecular sequences. J. Nat. History 34, 1719–1729 (2000).

    Google Scholar 

  74. Neiman, M., Hehman, G., Miller, J. T., Logsdon, J. M. Jr. & Taylor, D. R. Accelerated mutation accumulation in asexual lineages of a freshwater snail. Mol. Biol. Evol. 27, 954–963 (2010).

    CAS  PubMed  Google Scholar 

  75. Ha, K. et al. Histone deacetylase inhibitor treatment induces ‘BRCAness’ and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells. Oncotarget 5, 5637–5650 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Eigen, M. & Schuster, P. The hypercycle. a principle of natural self-organization. part a: emergence of the hypercycle. Naturwissenschaften 64, 541–565 (1977).

    CAS  PubMed  Google Scholar 

  77. Johnson, J. A. & Dunn, P. O. Low genetic variation in the heath hen prior to extinction and implications for the conservation of prairie-chicken populations. Conserv. Genet. 7, 37–48 (2006).

    Google Scholar 

  78. Murray, G. G. R. et al. Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science 358, 951–954 (2017).

    CAS  PubMed  Google Scholar 

  79. Allee, W. C. Animal Aggregations, a Study in General Sociology (The University of Chicago Press, 1931).

  80. Johnson, K. E. et al. Cancer cell population growth kinetics at low densities deviate from the exponential growth model and suggest an Allee effect. PLoS Biol. 17, e3000399 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bottger, K. et al. An emerging allee effect is critical for tumor initiation and persistence. PLoS Comput. Biol. 11, e1004366 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Boukal, D. S. & Berec, L. Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. J. Theor. Biol. 218, 375–394 (2002).

    PubMed  Google Scholar 

  83. Neufeld, Z. et al. The role of Allee effect in modelling post resection recurrence of glioblastoma. PLoS Comput. Biol. 13, e1005818 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Konstorum, A., Hillen, T. & Lowengrub, J. Feedback regulation in a cancer stem cell model can cause an allee effect. Bull. Math. Biol. 78, 754–785 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gillies, R. J., Brown, J. S., Anderson, A. R. A. & Gatenby, R. A. Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nat. Rev. Cancer 18, 576–585 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Alllee, W. C. B. & Bowen, E. S. Studies in animal aggregations: mass protection against colloidal silver among goldfishes. J. Exp. Zool. 61, 185–207 (1932).

    Google Scholar 

  87. Parrish, J. K. & E.-K., L. Complexity, pattern and evolutionary trade-offs in animal aggregation. Science 284, 99–100 (1999).

    CAS  PubMed  Google Scholar 

  88. Perkins, S. M., Shinohara, E. T., DeWees, T. & Frangoul, H. Outcome for children with metastatic solid tumors over the last four decades. PLoS ONE 9, e100396 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Fujii, T. et al. Effectiveness of an adjuvant chemotherapy regimen for early-stage breast cancer: a systematic review and network meta-analysis. JAMA Oncol. 1, 1311–1318 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Carrato, A. Adjuvant treatment of colorectal cancer. Gastrointest. Cancer Res. 2, S42–S46 (2008).

    PubMed  PubMed Central  Google Scholar 

  91. Park, C. K., Jung, W. H. & Koo, J. S. Pathologic evaluation of breast cancer after neoadjuvant therapy. J. Pathol. Transl Med. 50, 173–180 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. Gatenby, R. A., Artzy-Randrup, Y., Epstein, T., Reed, D. R. & Brown, J. S. Eradicating metastatic cancer and the eco-evolutionary dynamics of Anthropocene extinctions. Cancer Res. 80, 613–623 (2020).

    CAS  PubMed  Google Scholar 

  93. Gatenby, R. A., Zhang, J. & Brown, J. S. First strike-second strike strategies in metastatic cancer: lessons from the evolutionary dynamics of extinction. Cancer Res. 79, 3174–3177 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Koinis, F., Kotsakis, A. & Georgoulias, V. Small cell lung cancer (SCLC): no treatment advances in recent years. Trans. Lung Cancer Res. 5, 39–20 (2016).

    CAS  Google Scholar 

  95. Sweeney, C. J. et al. Chemohormonal therapy for metastatic hormone sensitive prostate cancer. N. Engl. J. Med. 373, 737–746 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rudin S., Marable M., Huang R. The promise of pharmacogenomics in reducing toxicity during acute lymphoblastic leukemia maintenance treatment. Genomics Proteomics Bioinformatics https://doi.org/10.1016/j.gpb.2016.11.003 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bhojwani, D., Yang, J. J. & Pui, C. H. Biology of childhood acute lymphoblastic leukemia. Pediatr. Clin. North. Am. 62, 47–60 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. Campana, D. & Pui, C. H. Minimal residual disease-guided therapy in childhood acute lymphoblastic leukemia. Blood 129, 1913–1918 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ehler, L. E. Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest. Manag. Sci. 62, 787–789 (2006).

    CAS  PubMed  Google Scholar 

  100. Jansen, G., Gatenby, R. & Aktipis, C. A. Opinion: control vs. eradication: applying infectious disease treatment strategies to cancer. Proc. Natl Acad. Sci. USA 112, 937–938 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Pannell, J. H. The heath hen. Science 98, 174 (1943).

    CAS  PubMed  Google Scholar 

  102. Headstrom, B. R. Preservation of the heath hen. Science https://doi.org/10.1126/science.68.1749.15-a (1928).

    Article  PubMed  Google Scholar 

  103. Greenberg, J. A Feathered River Across The Sky: The Passenger Pigeon’s Flight to Extinction (Bloomsbury, 2014).

Download references

Acknowledgements

The authors thank D. Lemanne, Oregon Integrative Oncology, for providing a steady stream of good ideas for framing and applying extinction therapy. This work was supported by the European Commission Horizon 2020 research and innovation programme (grant agreement no. 690817), a James S. McDonnell Foundation grant (“Cancer Therapy: Perturbing a Complex Adaptive System”), a V Foundation grant, NIH/National Cancer Institute (NCI) grants R01CA170595 (“Application of Evolutionary Principles to Maintain Cancer Control (PQ21)”), U54CA143970-05 (Physical Science Oncology Network; “Cancer as a Complex Adaptive System”) and R01CA187532-01 (“Imaging Habitats in Sarcoma”), the National Paediatric Cancer Foundation and the Jacobson Foundation (“Integrating Evolution into Cancer Therapy”).

Author information

Authors and Affiliations

Authors

Contributions

Both authors made a substantial contribution to all aspects of the preparation of the manuscript.

Corresponding author

Correspondence to Robert A. Gatenby.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatenby, R.A., Brown, J.S. Integrating evolutionary dynamics into cancer therapy. Nat Rev Clin Oncol 17, 675–686 (2020). https://doi.org/10.1038/s41571-020-0411-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-0411-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer