Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Species-specific traits mediate avian demographic responses under past climate change

Abstract

Anticipating species’ responses to environmental change is a pressing mission in biodiversity conservation. Despite decades of research investigating how climate change may affect population sizes, historical context is lacking, and the traits that mediate demographic sensitivity to changing climate remain elusive. We use whole-genome sequence data to reconstruct the demographic histories of 263 bird species over the past million years and identify networks of interacting morphological and life history traits associated with changes in effective population size (Ne) in response to climate warming and cooling. Our results identify direct and indirect effects of key traits representing dispersal, reproduction and survival on long-term demographic responses to climate change, thereby highlighting traits most likely to influence population responses to ongoing climate warming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Demographic histories of 263 avian species from 30 thousand years ago (kya) to 1 million years ago (Mya) (x axis presented on the log10 scale).
Fig. 2: Demographic histories of different avian groups from 30 kya to 1 Mya (all x axes presented on the log10 scale).
Fig. 3: Mean change in normalized Ne from 30 kya to 1 Mya for 263 avian species, summarized by zoogeographic realm.
Fig. 4: Network effects of key morphological and life history traits on demographic responses to climate warming and climate cooling, shown as directed acyclic graphs (left) and corresponding standardized regression coefficients (±s.e.) (right) for averaged best-performing models.

Similar content being viewed by others

Data availability

All data underlying these analyses (including raw Ne estimates over time for each species) are available in the Dryad Digital Repository38.

Code availability

All code underlying these analyses is available in the Dryad Digital Repository38.

References

  1. Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science. 328, 1164–1168 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Dirzo, R. et al. Defaunation in the Anthropocene. Science. 345, 401–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). Global Assessment Report on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).

  4. Rosenberg, K. V. et al. Decline of the North American avifauna. Science. 366, 120–124 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Fordham, D. A. et al. Using paleo-archives to safeguard biodiversity under climate change. Science. 369, eabc5654 (2020).

  6. Nogués-Bravo, D. et al. Cracking the code of biodiversity responses to past climate change. Trends Ecol. Evol. 33, 765–776 (2018).

    Article  PubMed  Google Scholar 

  7. Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Change. 10, e551 (2019).

  8. Chattopadhyay, B., Garg, K. M., Ray, R. & Rheindt, F. E. Fluctuating fortunes: genomes and habitat reconstructions reveal global climate-mediated changes in bats’ genetic diversity. Proc. R. Soc. B. 286, 20190304 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen, L. et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science. 364, eaav6202 (2019).

  10. Peart, C. R. et al. Determinants of genetic variation across eco-evolutionary scales in pinnipeds. Nat. Ecol. Evol. 4, 1095–1104 (2020).

    Article  PubMed  Google Scholar 

  11. Jenouvrier, S. Impacts of climate change on avian populations. Glob. Change Biol. 19, 2036–2057 (2013).

    Article  Google Scholar 

  12. Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change. 7, 205–208 (2017).

  13. Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE. 8, e65427 (2013).

  14. Telenský, T., Klvaňa, P., Jelínek, M., Cepák, J. & Reif, J. The influence of climate variability on demographic rates of avian Afro-palearctic migrants. Sci. Rep. 10, 17592 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jiguet, F., Gadot, A.-S., Julliard, R., Newson, S. E. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13, 1672–1684 (2007).

    Article  Google Scholar 

  16. Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature. 479, 359–364 (2011).

  17. Hung, C.-M. et al. Drastic population fluctuations explain the rapid extinction of the passenger pigeon. Proc. Natl. Acad. Sci. USA. 111, 10636–10641 (2014).

  18. Feng, S. et al. The genomic footprints of the fall and recovery of the crested ibis. Curr. Biol. 29, 340–349.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feng, S. et al. Dense sampling of bird diversity increases power of comparative genomics. Nature. 587, 252–257 (2020).

  20. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature. 475, 493–496 (2011).

  21. Fjeldså, J., Christidis, L. & Ericson, P. G. P. (eds) The Largest Avian Radiation: The Evolution of Perching Birds, or the Order Passeriformes (Lynx Edicions, 2020).

  22. Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science. 359, 83–86 (2018).

  23. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  24. Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).

    Article  PubMed  Google Scholar 

  25. McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).

    Article  Google Scholar 

  26. Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

    Article  PubMed  Google Scholar 

  27. Hancock, A. M. et al. Adaptation to climate across the Arabidopsis thaliana genome. Science. 334, 83–86 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G. & Ellegren, H. Temporal dynamics of avian populations during pleistocene revealed by whole-genome sequences. Curr. Biol. 25, 1375–1380 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 346, 1320–1331 (2014).

  31. Rokas, A., Williams, B. L., King, N. & Carroll, S. B. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature. 425, 798–804 (2003).

  32. Wolf, Y. I., Rogozin, I. B., Grishin, N. V. & Koonin, E. V. Genome trees and the tree of life. Trends Genet. 18, 472–479 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

    CAS  PubMed  Google Scholar 

  34. Forest, F. Calibrating the tree of life: fossils, molecules and evolutionary timescales. Ann. Bot. 104, 789–794 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Magallón, S. A. Dating lineages: molecular and paleontological approaches to the temporal framework of clades. Int. J. Plant Sci. 165, S7–S21 (2004).

    Article  Google Scholar 

  36. Nadachowska-Brzyska, K., Burri, R., Smeds, L. & Ellegren, H. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol. Ecol. 25, 1058–1072 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bird, J. P. et al. Generation lengths of the world’s birds and their implications for extinction risk. Cons. Biol. 34, 1252–1261 (2020).

    Article  Google Scholar 

  38. Germain, R. et al. Species-specific traits mediate avian demographic responses under past climate change. Preprint at http://datadryad.org/stash/dataset/doi:10.5061/dryad.fn2z34tz8 (2022).

  39. Patton, A. H. et al. Contemporary demographic reconstruction methods are robust to genome assembly quality: a case study in Tasmanian devils. Mol. Biol. Evol. 36, 2906–2921 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, X. & Fu, Y.-X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555–559 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Terhorst, J. & Song, Y. S. Fundamental limits on the accuracy of demographic inference based on the sample frequency spectrum. Proc. Natl Acad. Sci. USA 112, 7677–7682 (2015).

  42. Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Lapierre, M., Lambert, A. & Achaz, G. Accuracy of demographic inferences from the site frequency spectrum: the case of the yoruba population. Genetics. 206, 439–449 (2017).

  44. Mazet, O., Rodríguez, W., Grusea, S., Boitard, S. & Chikhi, L. On the importance of being structured: instantaneous coalescence rates and human evolution—lessons for ancestral population size inference? Heredity. 116, 362–371 (2016).

  45. Chikhi, L. et al. The IICR (inverse instantaneous coalescence rate) as a summary of genomic diversity: insights into demographic inference and model choice. Heredity. 120, 13–24 (2018).

  46. Teixeira, H. et al. Impact of model assumptions on demographic inferences: the case study of two sympatric mouse lemurs in northwestern Madagascar. BMC Ecol. Evol. 21, 197 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 31, 3718–3720 (2015).

  48. Smith, M. R. TreeDist: distances between phylogenetic trees. Zenodo https://doi.org/10.5281/ZENODO.3528124 (2019).

  49. Paleo-López, R. et al. A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts. Ecol. Evol. 6, 3851–3861 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Snyder, C. W. Evolution of global temperature over the past two million years. Nature. 538, 226–228 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. David, F. N. Tables of the Ordinates and Probability Integral of the Distribution of the Correlation Coefficient in Small Samples (Cambridge Univ. Press, 1938).

  52. Guenther, W. C. Desk calculation of probabilities for the distribution of the sample correlation coefficient. Am. Stat. 31, 45–48 (1977).

    Google Scholar 

  53. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  54. Barton, K. MuMIn: multi-model inference. R (2022).

  55. White, G. & Burnham, K. Program MARK: survival estimation from populations of marked animals. Bird Study. 46, 120–139 (1999).

  56. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article  Google Scholar 

  57. van der Bijl, W. phylopath: perform phylogenetic path analysis. R (2021).

  58. Gonzalez-Voyer, A. & von Hardenberg, A. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed Garamszegi, L.), pp 201–229 (Springer, 2014).

  59. Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science. 339, 74–78 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was made possible by the generous efforts of field biologists and museum staff who contributed samples to the B10k Project. This work was supported by a National Natural Science Foundation of China grant (nos. 32170626 and 31901214) to S.F., an Independent Research Fund Denmark grant to D.N.-B. and G.Z. (no. 8021-00282B) and grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (no. XDB31020000), International Partnership Program of the Chinese Academy of Sciences (no. 152453KYSB20170002), Carlsberg Foundation (no. CF16-0663) and Villum Foundation (no. 25900) to G.Z.

Author information

Authors and Affiliations

Authors

Contributions

R.R.G., S.F., G.Z. and D.N-B. designed the study and wrote the paper. R.R.G., S.F. and G.C. carried out analyses. R.R.G., S.F., G.C., G.R.G., J.A.T., C.R., F.L., J.F., P.A.H., M.T.P.G., G.Z. and D.N-B. contributed towards the assembly of genomic and morphological and life history data, discussion of results and reviewing and editing the manuscript.

Corresponding authors

Correspondence to Ryan R. Germain, Guojie Zhang or David Nogués-Bravo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Nicolas Dussex and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Tables 1–12, Figs. 1–24 and additional references.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germain, R.R., Feng, S., Chen, G. et al. Species-specific traits mediate avian demographic responses under past climate change. Nat Ecol Evol 7, 862–872 (2023). https://doi.org/10.1038/s41559-023-02055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02055-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing