Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homo sapiens and Neanderthals share high cerebral cortex integration into adulthood

Abstract

There is controversy around the mechanisms that guided the change in brain shape during the evolution of modern humans. It has long been held that different cortical areas evolved independently from each other to develop their unique functional specializations. However, some recent studies suggest that high integration between different cortical areas could facilitate the emergence of equally extreme, highly specialized brain functions. Here, we analyse the evolution of brain shape in primates using three-dimensional geometric morphometrics of endocasts. We aim to determine, firstly, whether modern humans present unique developmental patterns of covariation between brain cortical areas; and secondly, whether hominins experienced unusually high rates of evolution in brain covariation as compared to other primates. On the basis of analyses including modern humans and other extant great apes at different developmental stages, we first demonstrate that, unlike our closest living relatives, Homo sapiens retain high levels of covariation between cortical areas into adulthood. Among the other great apes, high levels of covariation are only found in immature individuals. Secondly, at the macro-evolutionary level, our analysis of 400 endocasts, representing 148 extant primate species and 6 fossil hominins, shows that strong covariation between different areas of the brain in H. sapiens and Homo neanderthalensis evolved under distinctly higher evolutionary rates than in any other primate, suggesting that natural selection favoured a greatly integrated brain in both species. These results hold when extinct species are excluded and allometric effects are accounted for. Our findings demonstrate that high covariation in the brain may have played a critical role in the evolution of unique cognitive capacities and complex behaviours in both modern humans and Neanderthals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patterns of postnatal integration in modern humans and chimpanzees.
Fig. 2: Macro-evolution of primate brain morphology and covariation.
Fig. 3: Evolutionary rates of integration within Hominoidea.

Similar content being viewed by others

Data availability

All data required to replicate this study are available at https://doi.org/10.6084/m9.figshare.21202775. Source data are provided with this paper.

Code availability

The code required to replicate this study is available at https://doi.org/10.6084/m9.figshare.21202775.

References

  1. Ponce de León, M. S. et al. The primitive brain of early Homo. Science 372, 165–171 (2021).

    Article  Google Scholar 

  2. Melchionna, M. et al. From smart apes to human brain boxes. A uniquely derived brain shape in late hominins clade. Front. Earth Sci. 8, 273 (2020).

    Article  Google Scholar 

  3. Du, A. et al. Pattern and process in hominin brain size evolution are scale-dependent. Proc. R. Soc. B 285, 20172738 (2018).

    Article  Google Scholar 

  4. Sansalone, G. et al. Variation in the strength of allometry drives rates of evolution in primate brain shape. Proc. R. Soc. B 287, 20200807 (2020).

    Article  CAS  Google Scholar 

  5. Gunz, P. et al. Neanderthal introgression sheds light on modern human endocranial globularity. Curr. Biol. 29, 120–127 (2019).

    Article  CAS  Google Scholar 

  6. Finlay, B. L. & Darlington, R. B. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995).

    Article  CAS  Google Scholar 

  7. Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).

    Article  CAS  Google Scholar 

  8. Harvey, P. H. & Krebs, J. R. Comparing brains. Science 249, 140–146 (1990).

    Article  CAS  Google Scholar 

  9. Finlay, B. L., Darlington, R. B. & Nicastro, N. Developmental structure in brain evolution. Behav. Brain Sci. 24, 263–278 (2001).

    Article  CAS  Google Scholar 

  10. Barton, R. A. & Venditti, C. Human frontal lobes are not relatively large. Proc. Natl Acad. Sci. USA 110, 9001–9006 (2013).

    Article  CAS  Google Scholar 

  11. Barton, R. A. & Venditti, C. Rapid evolution of the cerebellum in humans and other great apes. Curr. Biol. 24, 2440–2444 (2014).

    Article  CAS  Google Scholar 

  12. Sotiras, A. et al. Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion. Proc. Natl Acad. Sci. USA 114, 3527–3532 (2017).

    Article  CAS  Google Scholar 

  13. Gómez-Robles, A., Hopkins, W. D. & Sherwood, C. C. Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans. Nat. Commun. 5, 4469 (2014).

  14. Smaers, J. B. & Vanier, D. R. Brain size expansion in primates and humans is explained by a selective modular expansion of the cortico-cerebellar system. Cortex 118, 292–305 (2019).

    Article  Google Scholar 

  15. DeCasien, A. R. & Higham, J. P. Primate mosaic brain evolution reflects selection on sensory and cognitive specialization. Nat. Ecol. Evol. 3, 1483–1493 (2019).

    Article  Google Scholar 

  16. Montgomery, S. H., Mundy, N. I. & Barton, R. A. Brain evolution and development: adaptation, allometry and constraint. Proc. R. Soc. B 283, 20160433 (2016).

    Article  Google Scholar 

  17. Villmoare, B. Morphological integration, evolutionary constraints, and extinction: a computer simulation-based study. Evol. Biol. 40, 76–83 (2013).

    Article  Google Scholar 

  18. Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: from development to deep time. Philos. Trans. R. Soc. B 369, 20130254 (2014).

    Article  CAS  Google Scholar 

  19. Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl Acad. Sci. USA 109, 10661–10668 (2012).

    Article  CAS  Google Scholar 

  20. Barton, R. A. & Montgomery, S. H. Proportional versus relative size as metrics in human brain evolution. Proc. Natl Acad. Sci. USA 116, 3–4 (2019).

    Article  CAS  Google Scholar 

  21. Avin, S., Currie, A. & Montgomery, S. H. An agent-based model clarifies the importance of functional and developmental integration in shaping brain evolution. BMC Biol. 19, 97 (2021).

    Article  Google Scholar 

  22. Aristide, L. et al. Brain shape convergence in the adaptive radiation of New World monkeys. Proc. Natl Acad. Sci. USA 113, 2158–2163 (2016).

    Article  CAS  Google Scholar 

  23. Neubauer, S., Hublin, J.-J. & Gunz, P. The evolution of modern human brain shape. Sci. Adv. 4, eaao5961 (2018).

    Article  Google Scholar 

  24. Neubauer, S., Gunz, P., Scott, N. A., Hublin, J. J. & Mitteroecker, P. Evolution of brain lateralization: a shared hominid pattern of endocranial asymmetry is much more variable in humans than in great apes. Sci. Adv. 6, eaax9935 (2020).

  25. Ni, X., Flynn, J. J., Wyss, A. R. & Zhang, C. Cranial endocast of a stem platyrrhine primate and ancestral brain conditions in anthropoids. Sci. Adv. 5, eaav7913 (2019).

  26. Cobb, S. N. & O’Higgins, P. The ontogeny of sexual dimorphism in the facial skeleton of the African apes. J. Hum. Evol. 53, 176–190 (2007).

    Article  Google Scholar 

  27. Ragni, A. J. Trabecular architecture of the capitate and third metacarpal through ontogeny in chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla). J. Hum. Evol. 138, 102702 (2020).

    Article  Google Scholar 

  28. Nadig, A. et al. Morphological integration of the human brain across adolescence and adulthood. Proc. Natl Acad. Sci. USA 118, e2023860118 (2021).

    Article  CAS  Google Scholar 

  29. Ardesch, D. J. et al. Evolutionary expansion of connectivity between multimodal association areas in the human brain compared with chimpanzees. Proc. Natl Acad. Sci. USA 116, 7101–7106 (2019).

    Article  CAS  Google Scholar 

  30. Garin, C. M. et al. An evolutionary gap in primate default mode network organization. Cell Rep. 39, 110669 (2022).

    Article  CAS  Google Scholar 

  31. Watanabe, A., Balanoff, A. M., Gignac, P. M., Gold, M. E. L. & Norell, M. A. Novel neuroanatomical integration and scaling define avian brain shape evolution and development. eLife 10, e68809 (2021).

    Article  CAS  Google Scholar 

  32. Stout, D. & Chaminade, T. Stone tools, language and the brain in human evolution. Philos. Trans. R. Soc. B 367, 75–87 (2012).

    Article  Google Scholar 

  33. Bruner, E. & Iriki, A. Extending mind, visuospatial integration, and the evolution of the parietal lobes in the human genus. Quat. Int. 405, 98–110 (2016).

    Article  Google Scholar 

  34. Schaefer, N. K., Shapiro, B. & Green, R. E. An ancestral recombination graph of human, Neanderthal, and Denisovan genomes. Sci. Adv. 7, 776–792 (2021).

    Article  Google Scholar 

  35. Bruner, E., Spinapolice, E., Burke, A. & Overmann, K. A. in Evolution of Primate Social Cognition (eds Di Paolo, L. E. et al.) 299–326 (Springer, 2018).

  36. Bruner, E. & Gleeson, B. T. Body cognition and self-domestication in human evolution. Front. Psychol. 10, 1111 (2019).

    Article  Google Scholar 

  37. Porto, A., de Oliveira, F. B., Shirai, L. T., de Conto, V. & Marroig, G. The evolution of modularity in the mammalian skull I: morphological integration patterns and magnitudes. Evol. Biol. 36, 118–135 (2009).

    Article  Google Scholar 

  38. Conde-Valverde, M. et al. Neanderthals and Homo sapiens had similar auditory and speech capacities. Nat. Ecol. Evol. 5, 609–615 (2021).

    Article  Google Scholar 

  39. Hardy, B. L. et al. Direct evidence of Neanderthal fibre technology and its cognitive and behavioral implications. Sci. Rep. 10, 4889 (2020).

  40. Mondanaro, A. et al. A major change in rate of climate niche envelope evolution during hominid history. iScience 23, 101693 (2020).

    Article  CAS  Google Scholar 

  41. Leder, D. et al. A 51,000-year-old engraved bone reveals Neanderthals’ capacity for symbolic behaviour. Nat. Ecol. Evol. 5, 1273–1282 (2021).

    Article  Google Scholar 

  42. Hublin, J. J., Neubauer, S. & Gunz, P. Brain ontogeny and life history in pleistocene hominins. Philos. Trans. R. Soc. B 370, 20140062 (2015).

    Article  Google Scholar 

  43. Gunz, P., Neubauer, S., Maureille, B. & Hublin, J. J. Brain development after birth differs between Neanderthals and modern humans. Curr. Biol. 20, R921–R922 (2010).

    Article  CAS  Google Scholar 

  44. Gunz, P. et al. A uniquely modern human pattern of endocranial development. insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. J. Hum. Evol. 62, 300–313 (2012).

    Article  Google Scholar 

  45. Gunz, P. et al. Australopithecus afarensis endocasts suggest ape-like brain organization and prolonged brain growth. Sci. Adv. 6, eaaz4729 (2020).

    Article  Google Scholar 

  46. Pellegrini, A. D., Dupuis, D. & Smith, P. K. Play in evolution and development. Dev. Rev. 27, 261–276 (2007).

    Article  Google Scholar 

  47. Mithen, S. The prehistory of the mind. Camb. Archaeol. J. 7, 269 (1997).

    Google Scholar 

  48. Mithen, S. Creativity in Human Evolution and Prehistory (Routledge, 2005).

  49. Schlager, S. in Statistical Shape and Deformation Analysis: Methods, Implementation and Applications (eds Zheng, G. et al.) 217–256 (2017).

  50. Olsen, A. bezier: Toolkit for Bezier curves and splines. R package version 1.1.2 (2018).

  51. Gunz, P., Mitteroecker, P. & Bookstein, F. L. in Modern Morphometrics in Physical Anthropology (ed. Slice, D. E.) 73–98 (Kluwer Academic Publishers-Plenum Publishers, 2006).

  52. Bookstein, F. L. Integration, disintegration, and self-similarity: characterizing the scales of shape variation in landmark data. Evol. Biol. 42, 395–426 (2015).

    Article  Google Scholar 

  53. Bookstein, F. L. in Biennial International Conference on Information Processing in Medical Imaging (eds Colchester, A. C. F. & Hawkes, D. J.) 326–342 (Springer, 1991).

  54. Neaux, D. et al. Basicranium and face: assessing the impact of morphological integration on primate evolution. J. Hum. Evol. 118, 43–55 (2018).

    Article  Google Scholar 

  55. Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: a new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010).

    Article  Google Scholar 

  56. Schliep, K.P phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

  57. Dembo, M., Matzke, N. J., Mooers, A. Ø. & Collard, M. Bayesian analysis of a morphological supermatrix sheds light on controversial fossil hominin relationships. Proc. R. Soc. B 282, 20150943 (2015).

    Article  Google Scholar 

  58. Organ, C., Nunn, C. L., Machanda, Z. & Wrangham, R. W. Phylogenetic rate shifts in feeding time during the evolution of Homo. Proc. Natl Acad. Sci. USA 108, 14555–14559 (2011).

    Article  CAS  Google Scholar 

  59. Castiglione, S., Serio, C., Mondanaro, A., Melchionna, M. & Raia, P. Fast production of large, time‐calibrated, informal supertrees with tree.merger. Palaeontology 65, e12588 (2022).

    Article  Google Scholar 

  60. Machado, F. A., Hubbe, A., Melo, D., Porto, A. & Marroig, G. Measuring the magnitude of morphological integration: the effect of differences in morphometric representations and the inclusion of size. Evolution 73, 2518–2528 (2019).

    Article  Google Scholar 

  61. Adams, D. C. & Otárola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).

    Article  Google Scholar 

  62. Cardini, A. Integration and modularity in Procrustes shape data: is there a risk of spurious results? Evol. Biol. 46, 90–105 (2019).

    Article  Google Scholar 

  63. Neubauer, S., Gunz, P. & Hublin, J. J. The pattern of endocranial ontogenetic shape changes in humans. J. Anat. 215, 240–255 (2009).

    Article  Google Scholar 

  64. Wild, H. M., Heckemann, R. A., Studholme, C. & Hammers, A. Gyri of the human parietal lobe: volumes, spatial extents, automatic labelling, and probabilistic atlases. PLoS ONE 12, e0180866 (2017).

    Article  Google Scholar 

  65. Pereira-Pedro, A. S., Bruner, E., Gunz, P. & Neubauer, S. A morphometric comparison of the parietal lobe in modern humans and Neanderthals. J. Hum. Evol. 142, 102770 (2020).

    Article  Google Scholar 

  66. Parks, A. N. & Smaers, J. B. in Digital Endocasts: From Skulls to Brains (eds Bruner, E. et al.) 205–218 (Springer, 2018).

  67. Preuss, T. M. in Primate Origins: Adaptations and Evolution (eds Ravosa, M. J. & Marian Dagosto, M.) 625–675 (Springer, 2007).

  68. Todorov, O. S. & de Sousa, A. A. in Digital Endocasts: From Skulls to Brains (eds Bruner, E. et al.) 259–273 (Springer, 2018).

  69. Adams, D. C. & Collyer, M. L. Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution 73, 2352–2367 (2019).

    Article  Google Scholar 

  70. Adams, D. C. Evaluating modularity in morphometric data: challenges with the RV coefficient and a new test measure. Methods Ecol. Evol. 7, 565–572 (2016).

    Article  Google Scholar 

  71. Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to M. White, P. Piras and C. Fruciano for their useful comments during manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived by G.S., A.P., S.W. and P.R. D.R.M., S.L., A.P., J.L., M.M. and K.A. processed the endocasts. S.L. and G.S. digitized the landmarks. G.S., P.R., A.P., C.S., S.C., M.M. and A.M. analysed the data. G.S., P.R., A.P. and S.W. wrote the manuscript with substantial contributions from all the other authors.

Corresponding authors

Correspondence to Gabriele Sansalone or Antonio Profico.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Amelie Beaudet, Stephen Montgomery and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Endocast local integration assessment.

The set of each semilandmark (a) and its 9 closest semilandmarks define the N-Core (b). The remaining semilandmarks define the C-Core (c). The N-Core and R-Core are subjected to two independent GPAs and the covariation between the two blocks is calculated by PLS (d). With CR the GPA is computed the entire set (e). The values from PLS and CR analyses are used to create a colour map of integration (f) and modularity (g).

Extended Data Fig. 2 Evolutionary rates of CR values within the Cercopithecinae clade.

Evolutionary rates of CR values within the Cercopithecinae clade.

Source data

Extended Data Fig. 3 Evolutionary rates of CR values within the Strepsirrhini.

Evolutionary rates of CR values within the Strepsirrhini.

Source data

Extended Data Fig. 4 Evolutionary rates of CR values within the family Cebidae.

Evolutionary rates of CR values within the family Cebidae.

Source data

Extended Data Table 1 R-PLS values
Extended Data Table 2 Effect sizes of separate PLS analyses
Extended Data Table 3 CR values measured after size and phylogenetic correction

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1–3, specimens institutional codes and tree in Newick format.

Reporting Summary

Source data

Source Data Fig. 1

Statistical test results and display.

Source Data Fig. 2

Statistical test results and display.

Source Data Fig. 3

Statistical test results and display.

Source Data Extended Data Table 1

Statistical test results.

Source Data Extended Data Table 2

Statistical test results.

Source Data Extended Data Fig. 2

Statistical test results and display.

Source Data Extended Data Fig. 3

Statistical test results and display.

Source Data Extended Data Fig. 4

Statistical test results and display.

Source Data Extended Data Table 3

Statistical test results.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sansalone, G., Profico, A., Wroe, S. et al. Homo sapiens and Neanderthals share high cerebral cortex integration into adulthood. Nat Ecol Evol 7, 42–50 (2023). https://doi.org/10.1038/s41559-022-01933-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01933-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing