Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolutionary origins of genomic adaptations in an invasive copepod

Abstract

The ability of populations to expand their geographical ranges, whether as invaders, agricultural strains or climate migrants, is currently one of the most serious global problems. However, fundamental mechanisms remain poorly understood regarding factors that enable certain populations, such as biological invaders, to rapidly transition to novel habitats. According to one hypothesis, environmental fluctuations in the native range could promote successful invasions by imposing balancing selection on key traits and maintaining the genetic variation that enables rapid adaptation in novel habitats. Here we test the genomic predictions of this hypothesis by performing whole-genome sequencing of multiple independent invasive freshwater and native saline populations of the copepod Eurytemora affinis complex. We found that invasive populations have repeatedly responded to selection through the parallel use of the same single-nucleotide polymorphisms and genomic loci, to a much greater degree than expected. These same loci were enriched for signatures of long-term balancing selection in the native ranges, with 15–47% of loci exhibiting significant signatures of balancing selection. The strong association between parallel evolution in the invaded range and balancing selection in the native range supports the hypothesis that fluctuating habitats can promote invasive success and that balancing selection might serve as a widespread and important mechanism that enables rapid adaptation in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Population genomic signatures of parallel freshwater invasions.
Fig. 2: Signatures of directional and balancing selection at the NHA cluster in the E. affinis complex genome.
Fig. 3: Loci with signatures of parallel directional selection and association with salinity are enriched for signatures of long-term balancing selection in the native ranges.
Fig. 4: Alternative models of ion uptake from freshwater environments.

Similar content being viewed by others

Data availability

Raw sequence data and aligned reads have been deposited in the NCBI Sequence Read Archive under BioProject ID PRJNA610547.

Code availablility

Custom scripts used throughout this analysis are available online at https://github.com/TheDBStern/NEE2020.

References

  1. Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl Acad. Sci. USA 113, 7575–7579 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 12986 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bellard, C. et al. Will climate change promote future invasions? Glob. Change Biol. 19, 3740–3748 (2013).

    Google Scholar 

  4. Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential consequences of climate change for invasive species. Conserv. Biol. 22, 534–543 (2008).

    PubMed  Google Scholar 

  5. Chown, S. L. et al. Biological invasions, climate change and genomics. Evol. Appl. 8, 23–46 (2015).

    PubMed  Google Scholar 

  6. Rahel, F. J. & Olden, J. D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22, 521–533 (2008).

    PubMed  Google Scholar 

  7. Chapman, D. S. et al. Modelling the introduction and spread of non-native species: international trade and climate change drive ragweed invasion. Glob. Change Biol. 22, 3067–3079 (2016).

    Google Scholar 

  8. Dam, H. G. Evolutionary adaptation of marine zooplankton to global change. Annu. Rev. Mar. Sci. 5, 349–370 (2013).

    Google Scholar 

  9. Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).

    PubMed  Google Scholar 

  10. Lee, C. E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17, 386–391 (2002).

    Google Scholar 

  11. Lee, C. E. in Encyclopedia of Biological Invasions (eds Simberloff, D. & Rejmanek, M.) 215–222 (Univ. California Press 2010).

  12. Colautti, R. I., Alexander, J. M., Dlugosch, K. M., Keller, S. R. & Sultan, S. E. Invasions and extinctions through the looking glass of evolutionary ecology. Phil. Trans. R. Soc. B 372, 20160031 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Williamson, M. & Fitter, A. The varying success of invaders. Ecology 77, 1661–1666 (1996).

    Google Scholar 

  14. Hayes, K. R. & Barry, S. C. Are there any consistent predictors of invasion success? Biol. Invasions 10, 483–506 (2008).

    Google Scholar 

  15. Bock, D. G. et al. What we still don’t know about invasion genetics. Mol. Ecol. 24, 2277–2297 (2015).

    PubMed  Google Scholar 

  16. Kolar, C. S. & Lodge, D. M. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16, 199–204 (2001).

    PubMed  Google Scholar 

  17. Lee, C. E. & Bell, M. A. Causes and consequences of recent freshwater invasions by saltwater animals. Trends Ecol. Evol. 14, 284–288 (1999).

    CAS  PubMed  Google Scholar 

  18. Casties, I., Seebens, H. & Briski, E. Importance of geographic origin for invasion success: a case study of the North and Baltic seas versus the Great Lakes–St. Lawrence River region. Ecol. Evol. 6, 8318–8329 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Lee, C. E. & Gelembiuk, G. W. Evolutionary origins of invasive populations. Evol. Appl. 1, 427–448 (2008).

    PubMed  PubMed Central  Google Scholar 

  20. Winkler, G., Dodson, J. J. & Lee, C. E. Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis. Mol. Ecol. 17, 415–430 (2008).

    PubMed  Google Scholar 

  21. Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

    PubMed  Google Scholar 

  22. Lee, C. E. Evolutionary mechanisms of habitat invasions, using the copepod Eurytemora affinis as a model system. Evol. Appl. 9, 248–270 (2016).

    CAS  PubMed  Google Scholar 

  23. Peischl, S. & Excoffier, L. Expansion load: recessive mutations and the role of standing genetic variation. Mol. Ecol. 24, 2084–2094 (2015).

    PubMed  Google Scholar 

  24. Messer, P. W., Ellner, S. P. & Hairston, N. G. Can population genetics adapt to rapid evolution? Trends Genet. 32, 408–418 (2016).

    CAS  PubMed  Google Scholar 

  25. Lewontin, R. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974).

  26. Crow, J. F. Muller, Dobzhansky, and overdominance. J. Hist. Biol. 20, 351–380 (1987).

    Google Scholar 

  27. Beatty, J. Weighing the risks: stalemate in the classical/balance controversy. J. Hist. Biol. 20, 289–319 (1987).

    Google Scholar 

  28. Asthana, S., Schmidt, S. & Sunyaev, S. A limited role for balancing selection. Trends Genet. 21, 30–32 (2005).

    CAS  PubMed  Google Scholar 

  29. Muller, H. J. Our load of mutations. Am. J. Hum. Genet. 2, 111–176 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dobzhansky, T. A review of some fundamental concepts and problems of population genetics. Cold Spring Harb. Symp. Quant. Biol. 20, 1–15 (1955).

    CAS  PubMed  Google Scholar 

  31. Hedrick, P. W. Genetic variation in a heterogeneous environment. I. Temporal heterogeneity and absolute dominance model. Genetics 78, 757–770 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dempster, E. R. Maintenance of genetic heterogeneity. Cold Spring Harb. Symp. Quant. Biol. 20, 25–32 (1955).

    CAS  PubMed  Google Scholar 

  33. Haldane, J. B. S. & Jayakar, S. D. Polymorphism due to selection of varying direction. J. Genet. 58, 237–242 (1963).

    Google Scholar 

  34. Gillespie, J. Polymorphism in random environments. Theor. Popul. Biol. 4, 193–195 (1973).

    Google Scholar 

  35. Felsenstein, J. Theoretical population genetics of variable selection and migration. Annu. Rev. Genet. 10, 253–280 (1976).

    CAS  PubMed  Google Scholar 

  36. Holt, R. D., Barfield, M. & Gomulkiewicz, R. Temporal variation can facilitate niche evolution in harsh sink environments. Am. Nat. 164, 187–200 (2004).

    PubMed  Google Scholar 

  37. Huang, Y., Tran, I. & Agrawal, A. F. Does genetic variation maintained by environmental heterogeneity facilitate adaptation to novel selection? Am. Nat. 188, 27–37 (2016).

    PubMed  Google Scholar 

  38. de Filippo, C. et al. Recent selection changes in human genes under long-term balancing selection. Mol. Biol. Evol. 33, 1435–1447 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Hermisson, J. & Pennings, P. S. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169, 2335–2352 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hermisson, J. & Pennings, P. S. Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation. Methods Ecol. Evol. 8, 700–716 (2017).

    Google Scholar 

  41. Jensen, J. D. On the unfounded enthusiasm for soft selective sweeps. Nat. Commun. 5, 6281 (2014).

    Google Scholar 

  42. Ralph, P. L. & Coop, G. The role of standing variation in geographic convergent adaptation. Am. Nat. 186, S5–S23 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Brennan, R. S., Garrett, A. D., Huber, K. E., Hargarten, H. & Pespeni, M. H. Rare genetic variation and balanced polymorphisms are important for survival in global change conditions. Proc. R. Soc. B 286, 20190943 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mallard, F., Nolte, V., Tobler, R., Kapun, M. & Schlotterer, C. A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila. Genome Biol. 19, 119 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Kelly, J. K. & Hughes, K. A. Pervasive linked selection and intermediate-frequency alleles are implicated in an evolve-and-resequencing experiment of Drosophila simulans. Genetics 211, 943–961 (2019).

    CAS  PubMed  Google Scholar 

  46. Stern, D. L. The genetic causes of convergent evolution. Nat. Rev. Genet. 14, 751–764 (2013).

    CAS  PubMed  Google Scholar 

  47. Lee, K. M. & Coop, G. Population genomics perspectives on convergent adaptation. Phil. Trans. R. Soc. B 374, 20180236 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Waldvogel, A. M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18 (2019).

    Google Scholar 

  49. Lee, C. E. Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis. Evolution 53, 1423–1434 (1999).

    PubMed  Google Scholar 

  50. Katajisto, T. Copepod eggs survive a decade in the sediments of the Baltic Sea. Hydrobiologia 320, 153–159 (1996).

    Google Scholar 

  51. Ban, S. & Minoda, T. Hatching of diapause eggs of Eurytemora affinis (Copepoda: Calanoida) collected from lake-bottom sediments. J. Crustac. Biol. 12, 51–56 (1992).

    Google Scholar 

  52. Glippa, O., Denis, L., Lesourd, S. & Souissi, S. Seasonal fluctuations of the copepod resting egg bank in the middle Seine estuary, France: impact on the nauplii recruitment. Estuar. Coast. Mar. Sci. 142, 60–67 (2014).

    Google Scholar 

  53. Posavi, M., Gelembiuk, G. W., Larget, B. & Lee, C. E. Testing for beneficial reversal of dominance during salinity shifts in the invasive copepod Eurytemora affinis, and implications for the maintenance of genetic variation. Evolution 68, 3166–3183 (2014).

    PubMed  Google Scholar 

  54. Lee, C. E. Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”. Evolution 54, 2014–2027 (2000).

    CAS  PubMed  Google Scholar 

  55. Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Foll, M., Gaggiotti, O. E., Daub, J. T., Vatsiou, A. & Excoffier, L. Widespread signals of convergent adaptation to high altitude in Asia and America. Am. J. Hum. Genet. 95, 394–407 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. Gautier, M. Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201, 1555–1579 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Alberto, F. J. et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 9, 813 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Gerber, L. et al. The legs have it: in situ expression of ion transporters V-Type H+ ATPase and Na+/K+-ATPase in osmoregulatory leg organs of the invading copepod Eurytemora affinis. Physiol. Biochem. Zool. 89, 233–250 (2016).

    PubMed  Google Scholar 

  62. Johnson, K. E., Perreau, L., Charmantier, G., Charmantier-Daures, M. & Lee, C. E. Without gills: localization of osmoregulatory function in the copepod Eurytemora affinis. Physiol. Biochem. Zool. 87, 310–324 (2014).

    CAS  PubMed  Google Scholar 

  63. Lee, C. E., Kiergaard, M., Gelembiuk, G. W., Eads, B. D. & Posavi, M. Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions. Evolution 65, 2229–2244 (2011).

    CAS  PubMed  Google Scholar 

  64. Siewert, K. M. & Voight, B. F. Detecting long-term balancing selection using allele frequency correlation. Mol. Biol. Evol. 34, 2996–3005 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bitarello, B. D. et al. Signatures of long-term balancing selection in human genomes. Genome Biol. Evol. 10, 939–955 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Siewert, K. M. & Voight, B. F. BetaScan2: standardized statistics to detect balancing selection utilizing substitution data. Genome Biol. Evol. 12, 3873–3877 (2020).

    PubMed  PubMed Central  Google Scholar 

  67. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bolnick, D. I., Barrett, R. D. H., Oke, K. B., Rennison, D. J. & Stuart, Y. E. (Non)parallel evolution. Ann. Rev. Ecol. Evol. Syst. 49, 303–330 (2018).

    Google Scholar 

  69. Hedrick, P. W., Ginevan, M. E. & Ewing, E. P. Genetic polymorphism in heterogeneous environments. Ann. Rev. Ecol. Syst. 7, 1–32 (1976).

    Google Scholar 

  70. Wittmann, M. J., Bergland, A. O., Feldman, M. W., Schmidt, P. S. & Petrov, D. A. Seasonally fluctuating selection can maintain polymorphism at many loci via segregation lift. Proc. Natl Acad. Sci. USA 114, E9932–E9941 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S. & Petrov, D. A. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 10, e1004775 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Troth, A., Puzey, J. R., Kim, R. S., Willis, J. H. & Kelly, J. K. Selective trade-offs maintain alleles underpinning complex trait variation in plants. Science 361, 475–478 (2018).

    CAS  PubMed  Google Scholar 

  73. Siepielski, A. M., DiBattista, J. D. & Carlson, S. M. It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol. Lett. 12, 1261–1276 (2009).

    PubMed  Google Scholar 

  74. Thurman, T. J. & Barrett, R. D. H. The genetic consequences of selection in natural populations. Mol. Ecol. 25, 1429–1448 (2016).

    PubMed  Google Scholar 

  75. Gelembiuk, G. W., May, G. E. & Lee, C. E. Phylogeography and systematics of zebra mussels and related species. Mol. Ecol. 15, 1033–1050 (2006).

    CAS  PubMed  Google Scholar 

  76. May, G. E., Gelembiuk, G. W., Panov, V. E., Orlova, M. I. & Lee, C. E. Molecular ecology of zebra mussel invasions. Mol. Ecol. 15, 1021–1031 (2006).

    CAS  PubMed  Google Scholar 

  77. Bertram, J. & Masel, J. Different mechanisms drive the maintenance of polymorphism at loci subject to strong versus weak fluctuating selection. Evolution 73, 883–896 (2019).

    PubMed  Google Scholar 

  78. Chen, J., Nolte, V. & Schlotterer, C. Temperature stress mediates decanalization and dominance of gene expression in Drosophila melanogaster. PLoS Genet. 11, e1004883 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Panov, V. E., Krylov, P. I. & Riccardi, N. Role of diapause in dispersal and invasion success by aquatic invertebrates. J. Limnol. 63, 56–69 (2004).

    Google Scholar 

  80. Lee, C. E. & Frost, B. W. Morphological stasis in the Eurytemora affinis species complex (Copepoda: Temoridae). Hydrobiologia 480, 111–128 (2002).

    CAS  Google Scholar 

  81. Alekseev, V. R. & Souissi, A. A new species within the Eurytemora affinis complex (Copepoda: Calanoida) from the Atlantic Coast of USA, with observations on eight morphologically different European populations. Zootaxa 2767, 41–56 (2011).

  82. Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0 (2013–2015); http://www.repeatmasker.org

  83. Eyun, S. I. et al. Evolutionary history of chemosensory-related gene families across the Arthropoda. Mol. Biol. Evol. 34, 1838–1862 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sedlazeck, F. J., Rescheneder, P. & von Haeseler, A. NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29, 2790–2791 (2013).

    CAS  PubMed  Google Scholar 

  86. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kofler, R., Pandey, R. V. & Schlotterer, C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 27, 3435–3436 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hivert, V., Leblois, R., Petit, E. J., Gautier, M. & Vitalis, R. Measuring genetic differentiation from Pool-Seq data. Genetics 210, 315–330 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kofler, R. et al. PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS ONE 6, e0015925 (2011).

    Google Scholar 

  90. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  91. Ives, A. R., Midford, P. E. & Garland, T. Within-species variation and measurement error in phylogenetic comparative methods. Syst. Biol. 56, 252–270 (2007).

    PubMed  Google Scholar 

  92. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Neph, S. et al. BEDOPS: high-performance genomic feature operations. Bioinformatics 28, 1919–1920 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee, E. et al. Web Apollo: a web-based genomic annotation editing platform. Genome Biol. 14, R93 (2013).

  95. Kofler, R. & Schlotterer, C. Gowinda: unbiased analysis of gene set enrichment for genome-wide association studies. Bioinformatics 28, 2084–2085 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  97. Foley, B. R.et al. A gene-based SNP resource and linkage map for the copepod Tigriopus californicus. BMC Genom. 12, 568 (2011).

  98. Dymowska, A. K., Hwang, P. P. & Goss, G. G. Structure and function of ionocytes in the freshwater fish gill. Respir. Physiol. Neurobiol. 184, 282–292 (2012).

    CAS  PubMed  Google Scholar 

  99. Lee, C. E. & Petersen, C. H. Effects of developmental acclimation on adult salinity tolerance in the freshwater-invading copepod Eurytemora affinis. Physiol. Biochem. Zool. 76, 296–301 (2003).

    PubMed  Google Scholar 

  100. Lee, C. E., Remfert, J. L. & Chang, Y. M. Response to selection and evolvability of invasive populations. Genetica 129, 179–192 (2007).

    PubMed  Google Scholar 

  101. Lee, C. E., Remfert, J. L. & Gelembiuk, G. W. Evolution of physiological tolerance and performance during freshwater invasions. Integr. Comp. Biol. 43, 439–449 (2003).

    PubMed  Google Scholar 

  102. Ellner, S. & Sasaki, A. Patterns of genetic polymorphism maintained by fluctuating selection with overlapping generations. Theor. Popul. Biol. 50, 31–65 (1996).

    CAS  PubMed  Google Scholar 

  103. Turelli, M. & Barton, N. H. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and GxE interactions. Genetics 166, 1053–1079 (2004).

    PubMed  PubMed Central  Google Scholar 

  104. Turelli, M., Schemske, D. W. & Bierzychudek, P. Stable two-allele polymorphisms maintained by fluctuating fitnesses and seed banks: protecting the blues in Linanthus parryae. Evolution 55, 1283–1298 (2001).

    CAS  PubMed  Google Scholar 

  105. Ellner, S. & Hairston, N. G. Role of overlapping generations in maintaining genetic variation in a fluctuating environment. Am. Nat. 143, 403–417 (1994).

  106. Wright, S. Physiological and evolutionary theories of dominance. Am. Nat. 68, 24–53 (1934).

  107. Curtsinger, J. W., Service, P. M. & Prout, T. Antagonistic pleiotropy, reversal of dominance, and genetic polymorphism. Am. Nat. 144, 210–228 (1994).

  108. Gulisija, D., Kim, Y. & Plotkin, J. B. Phenotypic plasticity promotes balanced polymorphism in periodic environments by a genomic storage effect. Genetics 202, 1437–1448 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gulisija, D. & Plotkin, J. B. Phenotypic plasticity promotes recombination and gene clustering in periodic environments. Nat. Commun. 8, 2041 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by National Science Foundation grants OCE-1046372 and OCE-1658517 to C.E.L. and the Michael Guyer Postdoctoral Fellowship to D.B.S. We thank J. Pool, S. Schoville and N. Sharpe for comments on the manuscript. The samples used in this project were collected by M. Bontrager. Computation was performed using the computational resources and assistance of the UW-Madison Center for High Throughput Computing (CHTC) in the Department of Computer Sciences.

Author information

Authors and Affiliations

Authors

Contributions

C.E.L. contributed to the design of the study and data collection. D.B.S. contributed to the conception and execution of the analyses. Both authors contributed to the writing and approval of the final manuscript.

Corresponding author

Correspondence to Carol Eunmi Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 β(2) and NCD2 score density plot for the native, saline Baie de L’Isle Verte population (St. Lawrence drainage, Atlantic clade).

Higher β(2) scores and lower NCD2 scores signify stronger signatures of long-term balancing selection. β(2) scores are higher and NCD2 scores are lower on average for ‘parallel’ candidate SNPs (blue) relative to the rest of the genome (grey).

Extended Data Fig. 2 β(2) and NCD2 score density plot for the native, saline Taylor Bayou (Gulf of Mexico, Gulf clade).

Higher β(2) scores and lower NCD2 scores signify stronger signatures of long-term balancing selection. β(2) scores are higher and NCD2 scores are lower on average for ‘parallel’ candidate SNPs (blue) relative to the rest of the genome (grey).

Supplementary information

Supplementary Information

Supplementary Box 1, Materials and Methods.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stern, D.B., Lee, C.E. Evolutionary origins of genomic adaptations in an invasive copepod. Nat Ecol Evol 4, 1084–1094 (2020). https://doi.org/10.1038/s41559-020-1201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-1201-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing