Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene expression dynamics during rapid organismal diversification in African cichlid fishes

Abstract

Changes in gene expression play a fundamental role in phenotypic evolution. Transcriptome evolutionary dynamics have so far mainly been compared among distantly related species and remain largely unexplored during rapid organismal diversification, in which gene regulatory changes have been suggested as particularly effective drivers of phenotypic divergence. Here we studied gene expression evolution in a model system of adaptive radiation, the cichlid fishes of African Lake Tanganyika. By comparing gene expression profiles of 6 different organs in 74 cichlid species representing all subclades of this radiation, we demonstrate that the rate of gene expression evolution varies among organs, transcriptome parts and the subclades of the radiation, indicating different strengths of selection. We found that the noncoding part of the transcriptome evolved more rapidly than the coding part, and that the gonadal transcriptomes evolved more rapidly than the somatic ones, with the exception of liver. We further show that the rate of gene expression change was not constant over the course of the radiation but accelerated at its later phase. Finally, we show that—at the per-gene level—the evolution of expression patterns is dominated by stabilizing selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene expression patterns across the adaptive radiation of cichlid fishes in African Lake Tanganyika.
Fig. 2: PCA of overall gene expression levels per organ.
Fig. 3: Gene expression similarities among species and transcriptome parts.
Fig. 4: Rate of gene expression evolution across organs for protein-coding genes and lncRNAs.
Fig. 5: Organ-specific expression and expression dynamics of protein-coding genes and lncRNAs.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the NCBI repository under the BioProject accession number PRJNA550295. All related metadata are available on Dryad under the project accession number fj6q573sj.

Code availability

All custom codes generated during and/or analysed in the current study are available on Dryad under the project accession number fj6q573sj.

References

  1. King, M. & Wilson, C. A. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Romero, I. G., Ruvinsky, I. & Gilad, Y. Comparative studies of gene expression and the evolution of gene regulation. Nat. Rev. Genet. 13, 505–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Necsulea, A. & Kaessmann, H. Evolutionary dynamics of coding and non-coding transcriptomes. Nat. Rev. Genet. 15, 734–748 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Barrier, M., Robichaux, R. H. & Purugganan, M. D. Accelerated regulatory gene evolution in an adaptive radiation. Proc. Natl Acad. Sci. USA 98, 10208–10213 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Whittall, J. B., Voelckel, C., Kliebenstein, D. J. & Hodges, S. A. Convergence, constraint and the role of gene expression during adaptive radiation: floral anthocyanins in Aquilegia. Mol. Ecol. 15, 4645–4657 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Stern, D. L. & Orgogozo, V. The loci of evolution: how predictable is genetic evolution? Evolution 62, 2155–2177 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Naqvi, S. et al. Conservation, acquisition, and functional impact of sex-biased gene expression in mammals. Science 365, 55–61 (2019).

    Article  CAS  Google Scholar 

  10. Cardoso-Moreira, M. et al. Gene expression across mammalian organ development. Nature 571, 505–509 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).

  12. Berner, D. & Salzburger, W. The genomics of organismal diversification illuminated by adaptive radiations. Trends Genet. 31, 491–499 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Ronco, F., Büscher, H. H., Indermaur, A. & Salzburger, W. The taxonomic diversity of the cichlid fish fauna of ancient Lake Tanganyika, East Africa. J. Great Lakes Res. 46, 1067–1078 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ronco, F. et al. Drivers and dynamics of a massive adaptive radiation in African cichlid fishes. Nature https://doi.org/10.1038/s41586-020-2930-4 (2020).

  18. Fryer, G. & Iles, T. D. The Cichlid Fishes of the Great Lakes of Africa: Their Biology and Evolution (Oliver and Boyd, 1972).

  19. Liem, K. F. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Zool. 22, 425–441 (1973).

    Article  Google Scholar 

  20. Hulsey, C. D. Function of a key morphological innovation: fusion of the cichlid pharyngeal jaw. Proc. Biol. Sci. 273, 669–675 (2006).

    Google Scholar 

  21. Meyer, A. Ecological and evolutionary consequences of the trophic polymorphism in Cichlasoma citrinellum (Pisces: Cichlidae). Biol. J. Linn. Soc. 39, 279–299 (1990).

    Article  Google Scholar 

  22. Salzburger, W., Mack, T., Verheyen, E. & Meyer, A. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol. Biol. 5, 17 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Muschick, M., Barluenga, M., Salzburger, W. & Meyer, A. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation. BMC Evol. Biol. 11, 116 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salzburger, W. The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Mol. Ecol. 18, 169–185 (2009).

    Article  PubMed  Google Scholar 

  25. Ronco, F., Roesti, M. & Salzburger, W. A functional trade-off between trophic adaptation and parental care predicts sexual dimorphism in cichlid fish. Proc. R. Soc. B 286, 20191050 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Khaitovich, P., Enard, W., Lachmann, M. & Pääbo, S. Evolution of primate gene expression. Nat. Rev. Genet. 7, 693–702 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Fernández-Pérez, L., Mirecki-Garrido, M., Recio, C. & Guerra, B. in Chemistry and Biological Activity of Steroids (eds Ribeiro Salvador, J. A. & Cruz Silva, M. M.) Ch. 4 (IntechOpen, 2019).

  28. Van Thiel, D. H. & Gavaler, J. S. in Modern Concepts in Gastroenterology (eds Thomson, A. B. R. & Shaffer, E.) 337–353 (Springer, 1992).

  29. Shen, M. & Shi, H. Sex hormones and their receptors regulate liver energy homeostasis. Int. J. Endocrinol. 2015, 294278 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Qiao, Q. et al. Deep sexual dimorphism in adult medaka fish liver highlighted by multi-omic approach. Sci. Rep. 6, 32459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rose, E., Flanagan, S. P. & Jones, A. D. The effects of synthetic estrogen exposure on the sexually dimorphic liver transcriptome of the sex-role-reversed gulf pipefish. PLoS ONE 10, e0139401 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zheng, W. et al. Transcriptomic analyses of sexual dimorphism of the zebrafish liver and the effect of sex hormones. PLoS ONE 8, e53562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. El Taher, A., Ronco, F., Matschiner, M. & Salzburger, W. Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. Preprint at bioRxiv https://doi.org/10.1101/2020.10.23.335596 (2020).

  34. Meisel, R. P., Malone, J. H. & Clark, A. G. Faster-X evolution of gene expression in Drosophila. PLoS Genet. 8, e1003013 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fitch, W. & Margoliash, E. Construction of phylogenetic trees. Science 155, 279–284 (1967).

    Article  CAS  PubMed  Google Scholar 

  36. Robinson, D. F. & Foulds, L. R. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981).

    Article  Google Scholar 

  37. Warnefors, M. & Kaessmann, H. Evolution of the correlation between expression divergence and protein divergence in mammals. Genome Biol. Evol. 5, 1324–1335 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Guschanski, K., Warnefors, M. & Kaessmann, H. The evolution of duplicate gene expression in mammalian organs. Genome Res. 27, 1461–1474 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yanai, I. et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, J. et al. A quantitative framework for characterizing the evolutionary history of mammalian gene expression. Genome Res. 29, 53–63 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chan, E. T. et al. Conservation of core gene expression in vertebrate tissues. J. Biol. 8, 33 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Necsulea, A. et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505, 635–640 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Soumillon, M. et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep. 3, 2179–2190 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, 0976–0985 (2005).

    Article  CAS  Google Scholar 

  45. Eling, N., Morgan, M. D. & Marioni, J. C. Challenges in measuring and understanding biological noise. Nat. Rev. Genet. 20, 536–548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22, 2362–2368 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Wagner, C. E., McIntyre, P. B., Buels, K. S., Gilbert, D. M. & Michel, E. Diet predicts intestine length in Lake Tanganyika’s cichlid fishes. Funct. Ecol. 23, 1122–1131 (2009).

    Article  Google Scholar 

  48. Konings, A. Tanganyika Cichlids in Their Natural Habitat (Cichlid, 2015).

  49. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matschiner, M., Böhne, A., Ronco, F. & Salzburger, W. The genomic timeline of cichlid fish diversification across continents. Nat. Commun. https://doi.org/10.1038/s41467-020-17827-9 (2020).

  51. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sarropoulos, I., Marin, R., Cardoso-moreira, M. & Kaessmann, H. Developmental dynamics of lncRNAs across mammalian organs and species. Nature 571, 510–514 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kutter, C. et al. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet. 8, e1002841 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. & Dewey, C. N. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26, 493–500 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Liao, B. & Zhang, J. Low rates of expression profile divergence in highly expressed genes and tissue-specific genes during mammalian evolution. Mol. Biol. Evol. 23, 1119–1128 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Pennell, M. W. et al. Geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the University of Burundi, the Ministère de l’Eau, de l’Environnement, de l’Aménagement du Territoire et de l’Urbanisme, Republic of Burundi, the Tanzania Commission for Science and Technology, the Tanzania Fisheries Research Institute, the Tanzania National Parks Authority, the Tanzania Wildlife Research Institute and the Lake Tanganyika Research Unit, Department of Fisheries, Republic of Zambia, for research permits; G. Banyankimbona (University of Burundi), I. Kimirei (TAFIRI, Kigoma, Tanzania) and T. Banda and L. Makasa (Department of Fisheries, Mpulungu, Zambia) for assistance with research permits; the boat crews of the Chomba (D. Mwanakulya, J. Sichilima and H. D. Sichilima Jr) and the Maji Makubwa II (G. Kazumbe and family) for help during field work; V. Huwiler (Kalambo Lodge, Zambia), ‘Charity’ (Nkupi Lodge, Zambia) and the Zytkow family (Ndole Bay Lodge, Zambia) for lodging; C. Zytkow (Conservation Lake Tanganyika, Zambia), and P. Lassen and V. Huwiler (Kalambo Lodge, Zambia) for logistic support; C. Beisel and E. Burcklen at the Genomics Facility Basel for library preparation and sequencing; and J. Himes for fish illustrations. We also thank A. Necsulea for discussions and advice on the project. Calculations were performed at sciCORE (http://scicore.unibas.ch/) scientific computing centre at University of Basel (with support by the SIB/Swiss Institute of Bioinformatics). This work was funded by the European Research Council (Consolidator Grant no. 617585 ‘CICHLID~X’) and the Swiss National Science Foundation to W.S.

Author information

Authors and Affiliations

Authors

Contributions

A.E.T., F.R., A.I., N.B., L.W. and W.S. collected and/or dissected the specimens in the field. A.E.T. and N.B. organized the RNA-sequencing data production. A.E.T. processed and mapped the reads. A.E.T. performed all data analyses except for the temporal dynamics of transcriptome evolution that F.R. performed. A.B. contributed ideas and supervised data analyses. F.R. formatted the final figures. A.E.T. and W.S. wrote the manuscript with input from all authors. The project was originally designed by W.S., with input from A.E.T., F.R., A.B. and A.I.

Corresponding authors

Correspondence to Athimed El Taher or Walter Salzburger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Emily Wong, Marie Sémon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Gene expression patterns per organ and sex.

Principal component analyses of overall gene expression levels in brain, gill, lower pharyngeal jaw bone (LPJ), ovary, testis, and liver. Samples (brain: n = 428; gill: n = 434; LPJ: n = 425; ovary: n = 219; testis: n = 213; liver: n = 412) are coloured according to sex (red: female, blue: male). The proportion of variance explained by the first two principal components (PC1 and PC2) for each organ are indicated in parenthesis at x and y axes, respectively.

Extended Data Fig. 2 Expression variation through time within organs and transcriptome parts.

a, Pairwise Spearman’s rank correlation coefficient (ρ) of per species (brain, ovary, gill and testis: n = 74 taxa; LPJ and liver: n = 73 taxa) as a function of divergence time17 for protein-coding genes (left panel) and lncRNAs (right panel) in brain, gill, LPJ, ovary, testis, and liver. Samples are colour-coded according to tribe as defined in Fig. 1a; pairs of species belonging to two different tribes are indicated in grey. The regression line is represented with a dashed black line. b, Comparison of rate of expression change (measured as [1 – ρ] / divergence time17) between protein-coding genes (p-c) and lncRNAs (lnc) (two-sided t-test: ***P < 10-16). The box plot centre lines represent the median, box limits the upper and lower quartiles, and whiskers the 1.5x interquartile range. Outliers are not shown.

Extended Data Fig. 3 Protein-coding expression trajectories.

Neighbour-joining trees based on pairwise distance matrices of gene expression between pairs of species (n = 73 taxa) for protein-coding genes for brain, gill, LPJ, ovary, testis, and liver. All branches are coloured according to tribe as defined in Fig. 1a (see Extended Data Fig. 9 and Supplementary Table 2 for full species names).

Extended Data Fig. 4 lncRNAs expression trajectories.

Neighbour-joining trees based on pairwise distance matrices of gene expression between pairs of species (n = 73 taxa) for lncRNAs for brain, gill, LPJ, ovary, testis, and liver. All branches are colour-coded according to tribe as defined in Fig. 1a (see Extended Data Fig. 9 and Supplementary Table 2 for full species names).

Extended Data Fig. 5 Rate of protein-coding gene expression evolution along the species tree.

Species tree with branch lengths estimated along the fixed species tree topology35 (n = 73 taxa) based on pairwise correlations of gene expression of protein-coding genes in brain, gill, LPJ, ovary, testis, and liver. All branches are colour-coded according to tribe as defined in Fig. 1a (see Extended Data Fig. 9 and Supplementary Table 2 for full species names).

Extended Data Fig. 6 Rate of lncRNA gene expression evolution along the species tree.

Species tree with branch lengths estimated along the fixed species tree topology35 (n = 73 taxa) based on pairwise correlations of gene expression of lncRNAs in brain, gill, LPJ, ovary, testis, and liver. All branches are colour-coded according to tribe as defined in Fig. 1a (see Extended Data Fig. 9 and Supplementary Table 2 for full species names).

Extended Data Fig. 7 Rate of transcriptome evolution within organs for protein-coding genes (left panel) and lncRNAs (right panel).

Linear regression of the expression tree branch length (calculated along the fixed species tree (n = 73 taxa) topology, Extended Data Fig. 3c, d) as a function of species tree branch lengths (Fig. 1a) for brain, gill, LPJ, ovary, testis, and liver. Data points representing branches within tribes are colour-coded corresponding to the tribe as defined in Fig. 1a, and data points representing branches that link species from different tribes are coloured in grey. Dashed lines represent linear model fits. Next to each plot, a time-calibrated species tree is shown, with branches coloured according to the rate of transcriptome evolution (measured as expression tree branch length divided by species tree branch length).

Extended Data Fig. 8 Level of expression variation within organs.

a, Cumulative branch lengths (from root to tip of expression tree branch length calculated along the fixed species tree (n = 73 taxa) topology; Extended Data Fig. 3c, d) for protein-coding genes (left panel) and lncRNAs (right panel) in brain, gill, LPJ, ovary, testis, and liver calculated per species and summarised per tribe (n = 12 tribes). Boxplots are colour-coded according to tribe as defined in Fig. 1a; boxplot centre lines represent the median, box limits the upper and lower quartiles, and whiskers the 1.5x interquartile range. Differences among the tribes were assessed using an ANOVA (see Supplementary Table 5 for the P-values for all pairwise comparisons). b, Comparison of cumulative branch lengths between protein-coding genes (p-c) and lncRNAs (lnc) (two-sided t-test: ***P < 10-8). Boxplot centre lines represent the median, box limits the upper and lower quartiles, and whiskers the 1.5x interquartile range.

Extended Data Fig. 9 Species information.

List of species used in this experiment with abbreviation code, full species name and tribe information.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Taher, A., Böhne, A., Boileau, N. et al. Gene expression dynamics during rapid organismal diversification in African cichlid fishes. Nat Ecol Evol 5, 243–250 (2021). https://doi.org/10.1038/s41559-020-01354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01354-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing