Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Massive gene amplification on a recently formed Drosophila Y chromosome

Abstract

Widespread loss of genes on the Y is considered a hallmark of sex chromosome differentiation. Here we show that the initial stages of Y evolution are driven by massive amplification of distinct classes of genes. The neo-Y chromosome of Drosophila miranda initially contained about 3,000 protein-coding genes, but has gained over 3,200 genes since its formation about 1.5 million years ago primarily by tandem amplification of protein-coding genes ancestrally present on this chromosome. We show that distinct evolutionary processes may account for this drastic increase in gene number on the Y. Testis-specific and dosage-sensitive genes appear to have amplified on the Y to increase male fitness. A distinct class of meiosis-related multi-copy Y genes independently co-amplified on the X, and their expansion is probably driven by conflicts over segregation. Co-amplified X/Y genes are highly expressed in testis, enriched for meiosis and RNA interference functions and are frequently targeted by small RNAs in testis. This suggests that their amplification is driven by X versus Y antagonism for increased transmission, where sex chromosome drive suppression is probably mediated by sequence homology between the suppressor and distorter through the RNA interference mechanism. Thus, our analysis suggests that newly emerged sex chromosomes are a battleground for sexual and meiotic conflict.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene content evolution of newly formed sex chromosomes.
Fig. 2: Distinct evolutionary processes may drive the accumulation of multi-copy Y genes, or co-amplified X and Y genes.
Fig. 3: Characterization of ampliconic Y genes.
Fig. 4: Co-amplified X/Y genes are enriched for meiosis-related and RNAi functions.
Fig. 5: Co-amplified X/Y gene families produce anti-sense transcripts and small RNAs in testis.
Fig. 6: Examples of co-amplified X and Y genes.

Similar content being viewed by others

Data availability

All data that were used and generated for this project are given in Supplementary Table 10 and have been deposited on NCBI under BioProject ID PRJNA545539.

References

  1. Bachtrog, D. et al. Are all sex chromosomes created equal? Trends Genet. 27, 350–357 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Charlesworth, B. Model for evolution of Y chromosomes and dosage compensation. Proc. Natl Acad. Sci. USA 75, 5618–5622 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bachtrog, D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113–124 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mahajan, S. & Bachtrog, D. Convergent evolution of Y chromosome gene content in flies. Nat. Commun. 8, 785 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bellott, D. W. et al. Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators. Nat. Genet. 49, 387–394 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gatti, M. & Pimpinelli, S. Functional elements in Drosophila melanogaster heterochromatin. Annu. Rev. Genet. 26, 239–275 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Blackmon, H., Ross, L. & Bachtrog, D. Sex determination, sex chromosomes, and karyotype evolution in insects. J. Hered. 108, 78–93 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Hughes, J. F. et al. Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee. Nature 437, 100–103 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. Soh, Y. Q. S. et al. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 159, 800–813 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bachtrog, D. & Charlesworth, B. Reduced adaptation of a non-recombining neo-Y chromosome. Nature 416, 323–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Muller, H. J. in The New Systematics (ed. Huxley, J.) 185–268 (Clarendon Press, 1940).

  12. Dobzhansky, T. Drosophila miranda, a new species. Genetics 20, 377–391 (1935).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, Q. & Bachtrog, D. Sex-specific adaptation drives early sex chromosome evolution in Drosophila. Science 337, 341–345 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahajan, S., Wei, K. H.-C., Nalley, M. J., Gibilisco, L. & Bachtrog, D. De novo assembly of a young Drosophila Y chromosome using single-molecule sequencing and chromatin conformation capture. PLoS Biol. 16, e2006348 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Carvalho, A. B., Lazzaro, B. P. & Clark, A. G. Y chromosomal fertility factors kl-2 and kl-3 of Drosophila melanogaster encode dynein heavy chain polypeptides. Proc. Natl Acad. Sci. USA 97, 13239–13244 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bachtrog, D., Hom, E., Wong, K. M., Maside, X. & de Jong, P. Genomic degradation of a young Y chromosome in Drosophila miranda. Genome Biol. 9, R30 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Charlesworth, B. & Charlesworth, D. The degeneration of Y chromosomes. Phil. Trans. R. Soc. Lond. B 355, 1563–1572 (2000).

    Article  CAS  Google Scholar 

  18. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lucotte, E. A. et al. Dynamic copy number evolution of X- and Y-linked ampliconic genes in human populations. Genetics 209, 907–920 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bachtrog, D. Evidence that positive selection drives Y-chromosome degeneration in Drosophila miranda. Nat. Genet. 36, 518–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Meiklejohn, C. D. & Tao, Y. Genetic conflict and sex chromosome evolution. Trends Ecol. Evol. (Amst.) 25, 215–223 (2010).

    Article  Google Scholar 

  22. Konkel, M. K. & Batzer, M. A. A mobile threat to genome stability: the impact of non-LTR retrotransposons upon the human genome. Semin. Cancer Biol. 20, 211–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, Q. et al. The epigenome of evolving Drosophila neo-sex chromosomes: dosage compensation and heterochromatin formation. PLoS Biol. 11, e1001711 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bachtrog, D. Expression profile of a degenerating neo-Y chromosome in Drosophila. Curr. Biol. 16, 1694–1699 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Ellison, C. E. & Bachtrog, D. Dosage compensation via transposable element mediated rewiring of a regulatory network. Science 342, 846–850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lucchesi, J. C. & Kuroda, M. I. Dosage compensation in Drosophila. Cold Spring Harb. Perspect. Biol. 7, a019398 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Alekseyenko, A. A. et al. Conservation and de novo acquisition of dosage compensation on newly evolved sex chromosomes in Drosophila. Genes Dev. 27, 853–858 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rice, W. R. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38, 735–742 (1984).

    Article  PubMed  Google Scholar 

  29. Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Bellott, D. W. et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cortez, D. et al. Origins and functional evolution of Y chromosomes across mammals. Nature 508, 488–493 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Jaenike, J. Sex chromosome meiotic drive. Annu. Rev. Ecol. Syst. 32, 25–49 (2001).

    Article  Google Scholar 

  33. Frank, S. A. Divergence of meiotic drive-suppression systems as an explanation for sex-biased hybrid sterility and inviability. Evolution 45, 262–267 (1991).

    PubMed  Google Scholar 

  34. Tao, Y., Masly, J. P., Araripe, L., Ke, Y. & Hartl, D. L. A sex-ratio meiotic drive system in Drosophila simulans. I: an autosomal suppressor. PLoS Biol. 5, e292 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Tao, Y. et al. A sex-ratio meiotic drive system in Drosophila simulans. II: an X-linked distorter. PLoS Biol. 5, e293 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lin, C.-J. et al. The hpRNA/RNAi pathway is essential to resolve intragenomic conflict in the Drosophila male germline. Dev. Cell 46, 316–326.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brashear, W. A., Raudsepp, T. & Murphy, W. J. Evolutionary conservation of Y chromosome ampliconic gene families despite extensive structural variation. Genome Res. 28, 1841–1851 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bellott, D. W. et al. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. Nature 466, 612–616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carvalho, A. B., Dobo, B. A., Vibranovski, M. D. & Clark, A. G. Identification of five new genes on the Y chromosome of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 98, 13225–13230 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sturgill, D., Zhang, Y., Parisi, M. & Oliver, B. Demasculinization of X chromosomes in the Drosophila genus. Nature 450, 238–241 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Assis, R., Zhou, Q. & Bachtrog, D. Sex-biased transcriptome evolution in Drosophila. Genome Biol. Evol. 4, 1189–1200 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Meiklejohn, C. D., Landeen, E. L., Cook, J. M., Kingan, S. B. & Presgraves, D. C. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation. PLoS Biol. 9, e1001126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vibranovski, M. D., Zhang, Y. & Long, M. General gene movement off the X chromosome in the Drosophila genus. Genome Res. 19, 897–903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mueller, J. L. et al. The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat. Genet. 40, 794–799 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mueller, J. L. et al. Independent specialization of the human and mouse X chromosomes for the male germ line. Nat. Genet. 45, 1083–1087 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Helleu, Q. et al. Rapid evolution of a Y-chromosome heterochromatin protein underlies sex chromosome meiotic drive. Proc. Natl Acad. Sci. USA 113, 4110–4115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hurst, L. D. & Pomiankowski, A. Causes of sex ratio bias may account for unisexual sterility in hybrids: a new explanation of Haldane’s rule and related phenomena. Genetics 128, 841–858 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Larson, E. L., Keeble, S., Vanderpool, D., Dean, M. D. & Good, J. M. The composite regulatory basis of the large x-effect in mouse speciation. Mol. Biol. Evol. 34, 282–295 (2017).

    CAS  PubMed  Google Scholar 

  49. Phadnis, N. & Orr, H. A. A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science 323, 376–379 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Lahn, B. T. & Page, D. C. A human sex-chromosomal gene family expressed in male germ cells and encoding variably charged proteins. Hum. Mol. Genet. 9, 311–319 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Cocquet, J. et al. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse. PLoS Genet. 8, e1002900 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cocquet, J. et al. The multicopy gene sly represses the sex chromosomes in the male mouse germline after meiosis. PLoS Biol. 7, e1000244 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Larson, E. L., Kopania, E. E. K. & Good, J. M. Spermatogenesis and the evolution of mammalian sex chromosomes. Trends Genet. 34, 722–732 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Balakireva, M. D., Shevelyov, Yu. Ya, Nurminsky, D. I., Livak, K. J. & Gvozdev, V. A. Structural organization and diversification of Y-linked sequences comprising Su(Ste) genes in Drosophila melanogaster. Nucleic Acids Res. 20, 3731–3736 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Murphy, W. J. et al. Novel gene acquisition on carnivore Y chromosomes. PLoS Genet. 2, e43 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ellison, C. & Bachtrog, D. Recurrent gene co-amplification on Drosophila X and Y chromosomes. PLoS Genet. 15, e1008251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Smith, A., Hubley, R. & Green, P. RepeatMasker Open-4.0 (Institute for Systems Biology, accessed 30 August 2017); www.repeatmasker.org

  58. Smith, A. & Hubley, R. RepeatModeler Open-1.0. RepeatMasker Open-4.0 (Institute for Systems Biology, accessed 30 August 2017); www.repeatmasker.org

  59. Chu, C., Nielsen, R. & Wu, Y. REPdenovo: inferring de novo repeat motifs from short sequence reads. PLoS ONE 11, e0150719 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bao, W., Kojima, K. K. & Kohany, O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome annotation and curation using MAKER and MAKER-P. Curr. Protoc. Bioinformatics 48, 4.11.1–39 (2014).

    Google Scholar 

  64. Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19 (Suppl. 2), ii215–ii225 (2003).

    PubMed  Google Scholar 

  65. Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Gel, B. & Serra, E. karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 33, 3088–3090 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guy, L., Kultima, J. R. & Andersson, S. G. E. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26, 2334–2335 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–191 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Quinlan, A. R. BEDTools: the Swiss-army tool for genome feature analysis. Curr. Protoc. Bioinformatics 47, 11.12.1–34 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

D.B. was funded by NIH grants (nos. R01GM076007, GM101255 and R01GM093182). We thank L. Gibilisco for generating small RNA libraries and K. Chatla and A. Tran for generating genomic libraries.

Author information

Authors and Affiliations

Authors

Contributions

D.B. conceived and oversaw the project, generated and analysed data and wrote the manuscript. S.M. analysed data. R.B. generated and analysed data.

Corresponding author

Correspondence to Doris Bachtrog.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Phylogenetic relationships of co-amplified X/Y genes in D. miranda.

Maximum-likelihood trees of D. miranda X and Y gene copies with nodes showing >70 bootstrap support highlighted with black circles. X-linked copies are shown in red, Y-linked copies shown in blue, with distinct X and Y groupings collapsed. Fasta alignments are in Data Supplement 14.

Extended Data Fig. 2 Copy number estimates for co-amplified Y genes, multi-copy Y genes, and multi-copy autosome and X genes.

For co-amplified Y genes we show all genes that were identified as co-amplified. For the multi-copy Y genes we only show genes with >3 copies on the Y. For multi-copy autosome and X genes we show only genes with >4 total copies. Multi-copy autosome and X estimates are predicted to be highly similar given that the autosome and X background in each Y-chromosome replacement line is nearly identical. Slight deviations are probably due to stochasticity in sequencing and read mapping, residual heterozygosity in the MSH22 line, or unique Y-chromosome gene amplifications.

Extended Data Fig. 3 Dosage compensation status of neo-X homologs of single-copy (left) and multi-copy (right) Y genes.

Shown are the relative numbers of neo-X genes that are bound by the MSL-complex (and are thus dosage compensated), and those not bound (and thus not dosage compensated). MSL-binding data were generated for male D. miranda larvae. Genes with multiple copies on the Y are less likely to be dosage compensated on the X. The data are presented in Data Supplement 15.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Tables 4 and 6–10.

Reporting Summary

Supplementary Table 1

Gene loss on the different Muller elements of D. miranda. Shown are genes in D. pseudoobscura for different chromosomes that are absent on their homologous chromosome arm in D. miranda. The table gives D. pseudoobscura gene ID (FBgn), D. melanogaster orthologue, the chromosomal location of the gene in D. pseudoobscura, the tissue of highest expression in D. pseudoobscura, the category of the gene, and whether the gene is present somewhere else in the D. miranda genome. a, Genes missing from the neo-X chromosome. b, Genes missing from the neo-Y chromosome. c, Genes missing from Muller A-AD (X chromosome). d, Genes missing from Muller B (chr4). e, Genes missing from Muller E (chr2). f, Genes that moved between chromosomes.

Supplementary Table 2

Overview of multi-copy Y genes. a, Shown are total copy numbers for multi-copy Y genes, as well as the number of full-length (>90%) and partial Y copies (50–90%; 25–50%; and less than 25% compared to the length of the orthologous gene in D. pseudoobscura). b, Expression of orthologues of multi-copy Y genes in D. pseudoobscura. c, GO analysis for orthologous genes in D. melanogaster. No significant GO enrichment terms were detected.

Supplementary Table 3

Overview of co-amplified X/Y genes. a, Shown are total copy number for co-amplified X and Y genes, as well as the numbers of full-length (>90%) and partial X and Y copies (50–90%; 25–50%; and less than 25% compared to the length of the orthologous gene in D. pseudoobscura). b, Expression of orthologues of co-amplified X/Y genes in D. pseudoobscura. c, Expression of orthologues of co-amplified X/Y genes in D. melanogaster. d, GO analysis for orthologous genes in D. melanogaster. Shown are GO terms that were significantly enriched among co-amplified X/Y genes (using either Gorilla or PantherDB).

Supplementary Table 5

Clustering of multi-copy Y and co-amplified X/Y genes. a, Genome intervals of clustered (within 100 kb of each other) multi-copy genes and their D. pseudoobscura gene ID (FBgn). b, Genome intervals of clustered (within 100 kb of each other) co-amplified genes and their D. pseudoobscura gene ID (FBgn).

Supplementary Dataset 1

Repeat library used for masking the D. miranda genome.

Supplementary Dataset 2

Repeat annotation of the D. miranda genome.

Supplementary Dataset 3

Gene annotation (all genes) of the D. miranda genome.

Supplementary Dataset 4

Gene annotation of multi-copy Y genes and their orthologues in the D. miranda genome.

Supplementary Dataset 5

Gene annotation of co-amplified X and Y genes in the D. miranda genome.

Supplementary Dataset 6

Gene expression values (TPM) for multi-copy Y genes, and co-amplified Y genes, in different D. miranda male tissues, and tissue-specificity index tau.

Supplementary Dataset 7

Gene copy numbers for co-amplified X/Y genes.

Supplementary Dataset 8

Gene expression values (TPM) for co-amplified X and Y gene families, in different D. miranda male tissues.

Supplementary Datast 9

Gene expression values (FPKM) for orthologues of co-amplified X/Y genes in different D. pseudoobscura male and female tissues.

Supplementary Dataset 10

Sense and anti-sense testis total RNA summed counts for co-amplified genes.

Supplementary Dataset 11

Sense and anti-sense testis small RNA summed counts for co-amplified genes.

Supplementary Dataset 12

Testis total RNA counts for all copies of a gene family for different categories of genes on the X/neo-X and Y/neo-Y chromosome.

Supplementary Dataset 13

Testis small RNA raw counts for different categories of genes on the X/neo-X and Y/neo-Y chromosome.

Supplementary Dataset 14

Fasta alignment of co-amplified X/Y genes and their D. pseudoobscura orthologue.

Supplementary Dataset 15

MSL ChIP and Input counts (normalized to library size) for neo-X genes whose homologue is classified as single-copy or multi-copy Y/neo-Y.

Supplementary Dataset 16

Gene expression values (TPM) for single-copy Y genes, multi-copy Y genes, and co-amplified Y genes, and their neo-X/X homologues in different D. miranda tissues. Expression values for all copies of a gene family are shown individually.

Supplementary Dataset 17

Gene expression values (TPM) for multi-copy Y genes, and co-amplified X and Y genes in different D. miranda tissues. Expression values for all copies of a gene family are summed.

Supplementary Dataset 18

Gene expression values (FPKM) for orthologues of co-amplified X/Y genes in different D. melanogaster tissues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachtrog, D., Mahajan, S. & Bracewell, R. Massive gene amplification on a recently formed Drosophila Y chromosome. Nat Ecol Evol 3, 1587–1597 (2019). https://doi.org/10.1038/s41559-019-1009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-1009-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing