Article | Published:

Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction

Nature Ecology & Evolution (2019) | Download Citation

Abstract

Highly resolved palaeontological records can address a key question about our current climate crisis: how long will it be before the biosphere rebounds from our actions? There are many ways to conceptualize the recovery of the biosphere; here, we focus on the global recovery of species diversity. Mass extinction may be expected to be followed by rapid speciation, but the fossil record contains many instances where speciation is delayed—a phenomenon about which we have a poor understanding. A probable explanation for this delay is that extinctions eliminate morphospace as they curtail diversity, and the delay in diversification is a result of the time needed for new innovations to rebuild morphospace, which can then be filled out by new species. Here, we test this morphospace reconstruction hypothesis using the morphological complexity of planktic foraminifer tests after the Cretaceous–Palaeogene mass extinction. We show that increases in complexity precede changes in diversity, indicating that plankton are colonizing new morphospace, then slowly filling it in. Preliminary diversification is associated with a rapid increase in the complexity of groups refilling relict Cretaceous ecospace. Subsequent jumps in complexity are driven by evolutionary innovations (development of spines and photosymbionts), which open new niche space. The recovery of diversity is paced by the construction of new morphospace, implying a fundamental speed limit on diversification after an extinction event.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

All data and code related to this study are available at https://github.com/Fraass.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

  2. 2.

    Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327, 1214–1218 (2010).

  3. 3.

    Coxall, H. K., D’Hondt, S. & Zachos, J. C. Pelagic evolution and environmental recovery after the Cretaceous–Paleogene mass extinction. Geology 34, 297–300 (2006).

  4. 4.

    Smit, J. Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertirary boundary. Geol. Soc. Am. Spec. Pap. 190, 329–352 (1982).

  5. 5.

    Hemleben, C., Mühlen, D., Olsson, R. K. & Berggren, W. A. Surface texture and the first occurrence of spines in planktonic foraminifera from the Early Tertiary. Geol. Jb. 128, 117–146 (1991).

  6. 6.

    Olsson, R. K., Hemleben, C., Berggren, W. A. & Liu, C. Wall texture classification of planktonic foraminifera genera in the lower Danian. J. Foraminiferal Res. 22, 195–213 (1992).

  7. 7.

    Arenillas, I., Arz, J. & Molina, E. A new high‐resolution planktic foraminiferal zonation and subzonation for the lower Danian. Lethaia 37, 79–95 (2004).

  8. 8.

    Smit, J. & Ten Kate, W. G. H. Z. Trace-element patterns at the Cretaceous–Tertiary boundary—consequences of a large impact. Cretac. Res. 3, 307–332 (1982).

  9. 9.

    D’Hondt, S. & Keller, G. Some patterns of planktic foraminiferal assemblage turnover at the Cretaceous–Tertiary boundary. Mar. Micropaleontol. 17, 77–118 (1991).

  10. 10.

    Alegret, L., Arenillas, I., Arz, J. A. & Molina, E. Foraminiferal event-stratigraphy across the Cretaceous/Paleogene boundary. Neues Jahrb. Geol. Palaontol. Abh. 231, 25–50 (2004).

  11. 11.

    Koutsoukos, E. A. M. Phenotypic plasticity, speciation, and phylogeny in early Danian planktic foraminifera. J. Foraminiferal Res. 44, 109–142 (2014).

  12. 12.

    Lowery, C. et al. Rapid recovery of life at ground zero of the end Cretaceous mass extinction. Nature 558, 288–291 (2018).

  13. 13.

    Birch, H. S., Coxall, H. K. & Pearson, P. N. Evolutionary ecology of Early Paleocene planktonic foraminifera: size, depth habitat, and symbiosis. Paleobiology 38, 374–390 (2012).

  14. 14.

    Birch, H. S., Coxall, H. K., Pearson, P. N., Kroon, D. K. & Schmidt, D. N. Partial collapse of the marine carbon pump after the Cretaceous–Paleogene boundary. Geology 44, 287–290 (2016).

  15. 15.

    Fraass, A. J., Kelly, D. C. & Peters, S. E. Macroevolutionary history of the planktic foraminifera. Annu. Rev. Earth Planet. Sci. 43, 139–166 (2015).

  16. 16.

    Sepkoski, J. J. Jr. Rates of speciation in the fossil record. Phil. Trans. R. Soc. Lond. B 353, 315–326 (1998).

  17. 17.

    Kirchner, J. W. & Weil, A. Delayed biological recovery from extinctions throughout the fossil record. Nature 404, 177–180 (2000).

  18. 18.

    Alroy, J. Dynamics of origination and extinction in the marine fossil record. Proc. Natl Acad. Sci. USA 105, 11536–11542 (2008).

  19. 19.

    Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).

  20. 20.

    Knoll, A. H. & Follows, M. J. A bottom-up perspective on ecosystem change in Mesozoic oceans. Proc. R. Soc. B 283, 2016755 (2016).

  21. 21.

    Jiang, S., Bralower, T. J., Patzkowsky, M. E., Kump, L. R. & Schueth, J. D. Geographic controls on nannoplankton extinction across the Cretaceous/Paleogene boundary. Nat. Geosci. 2010, 280–285 (2010).

  22. 22.

    Renne, P. R. et al. State shift in Deccan volcanism at the Cretaceous–Paleogene boundary, possibly induced by impact. Science 350, 76–78 (2015).

  23. 23.

    Gertsch, B. et al. Environmental effects of Deccan volcanism across the Cretaceous–Tertiary transition in Meghalaya, India. Earth Planet. Sci. Lett. 310, 272–285 (2011).

  24. 24.

    Punekar, J., Mateo, P. & Keller, G. Effects of Deccan volcanism on paleoenvironment and planktic foraminifera: a global survey. Geol. Soc. Am. Spec. Pap. 505, 91–116 (2014).

  25. 25.

    Punekar, J. et al. Late Maastrichtian–early Danian high-stress environments and delayed recovery linked to Deccan volcanism. Cretac. Res. 49, 63–82 (2014).

  26. 26.

    Hull, P. M. & Norris, R. D. Diverse patterns of ocean export productivity change across the Cretaceous–Paleogene boundary: new insights from biogenic barium. Paleoceanography 26, PA3205 (2011).

  27. 27.

    Schueth, J. D., Bralower, T. J., Jiang, S. & Patzkowsky, M. E. The role of regional survivor incumbency in the evolutionary recovery of calcareous nannoplankton from the Cretaceous/Paleogene (K/Pg) mass extinction. Paleobiology 41, 661–679 (2015).

  28. 28.

    Erwin, D. H. Disparity: morphological pattern and developmental context. Paleontology 50, 57–73 (2007).

  29. 29.

    Solé, R. V., Montoya, J. S. & Erwin, D. H. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. Phil. Trans. R. Soc. Lond. 357, 697–707 (2002).

  30. 30.

    Yedid, G., Ofria, C. A. & Lenski, R. E. Selective press extinctions, but not random pulse extinctions, cause delayed ecological recovery in communities of digital organisms. Am. Nat. 173, E139–E154 (2009).

  31. 31.

    Foote, M. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology 20, 320–344 (1994).

  32. 32.

    Wagner, P. J. in Evolution Since Darwin: The First 150 Years 451–478 (Sinauer, Sunderland, 2010).

  33. 33.

    Hughes, M., Gerber, G. & Wulls, M. A. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA 110, 13875–13879 (2010).

  34. 34.

    Leckie, R. M. Paleoecology of mid-Cretaceous planktonic foraminifera: a comparison of open ocean and epicontinental assemblages. Micropaleontology 33, 164–176 (1987).

  35. 35.

    Henehan, M. J., Hull, P. M., Penman, D. E., Rae, J. W. B. & Schmidt, D. N. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Phil. Trans. R. Soc. B 371, 20150510 (2016).

  36. 36.

    Malmgren, B. A., Berggren, W. A. & Lohmann, G. P. Species formation through punctuated gradualism in planktonic foraminifera. Science 225, 317–319 (1984).

  37. 37.

    Kelly, C. D., Bralower, T. J. & Zachos, J. C. Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 141, 139–161 (1998).

  38. 38.

    Leckie, R. M., Bralower, T. J. & Chasman, R. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing in the mid-Cretaceous. Paleoceanography 17, 13-1–13-29 (2002).

  39. 39.

    Brombacher, A., Wilson, P. A., Bailey, I. & Ezard, T. H. G. The breakdown of static and evolutionary allometries during climatic upheaval. Am. Nat. 190, 350–362 (2017).

  40. 40.

    Peters, S. E., Kelly, D. C. & Fraass, A. J. Oceanographic controls on the diversity and extinction of planktonic foraminifera. Nature 493, 398–401 (2013).

  41. 41.

    Quillévéré, F., Norris, R. D., Kroon, D. & Wilson, P. A. Transient ocean warming and shifts in carbon reservoirs during the early Danian. Earth Planet. Sci. Lett. 265, 600–615 (2008).

  42. 42.

    Bornemann, A. et al. Latest Danian carbon isotope anomaly and associated environmental change in the southern Tethys (Nile Basin, Egypt). J. Geol. Soc. Lond. 166, 1135–1142 (2009).

  43. 43.

    Petrizzo, M. R. An early Late Paleocene event on Shatsky Rise, northwest Pacific Ocean (ODP Leg 198): evidence from planktonic foraminiferal assemblages. In Proc. Ocean Drilling Program (eds Bralower, T. J., Premoli Silva, I. & Malone, M. J.) 1–29 (Scientific Results Volume 198, 2005).

  44. 44.

    Schoene, B. et al. U–Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science 347, 182–184 (2015).

  45. 45.

    Jehle, S., Bornemann, A., Deprez, A. & Speijer, R. P. The impact of the Latest Danian Event on planktic foraminifera faunas at ODP Site 1210 (Shatsky Rise, Pacific Ocean). PLoS ONE 10, e0141644 (2015).

  46. 46.

    Quillévéré, F. & Norris, R. D. Ecological development of acarininids (planktonic foraminifera) and hydrographic evolution of Paleoecene surface waters. In Causes and Consequences of Globally Warm Climates in the Early Paleogene: Boulder, Colorado (eds Wing, S. L., Gingerich, P. D., Schmitz, B. & Thomas, E.) 223–238 (Special Paper 369, Geological Society of America, 2003).

  47. 47.

    Olsson, D. K., Hemleben, C., Berggren, W. A. & Huber, B. T. Atlas of Paleocene Planktonic Foraminifera 85 (Smithsonian Contributions to Paleobiology, 1999).

  48. 48.

    Huber, B. T. et al. Mesozoic planktonic foraminiferal taxonomic dictionary. Chronos www.chronos.org (2006).

  49. 49.

    Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).

  50. 50.

    Huber, B. T. et al. Pforams@microtax: a new online taxonomic database for planktonic foraminifera. Micropaleontology 62, 429–438 (2017).

  51. 51.

    Spero, H. Life history and stable isotope geochemistry of planktonic foraminifera. Paleontological Soc. Pap. 4, 7–36 (1998).

  52. 52.

    Vandenberghe, N. et al. in The Geologic Time Scale, 855–921 (Elsevier, Amsterdam, 2012).

Download references

Acknowledgements

The authors acknowledge support to C.M.L. via NSF-OCE-1737351. We are also grateful for the efforts of the scientific drilling community over the past 50 years in collecting the deep-sea cores that form the bulk of large datasets such as this.

Author information

Author notes

    • Andrew J. Fraass

    Present address: School of Earth Sciences, University of Bristol, Bristol, UK

Affiliations

  1. University of Texas Institute for Geophysics, Austin, TX, USA

    • Christopher M. Lowery
  2. Sam Houston State University, Huntsville, TX, USA

    • Andrew J. Fraass

Authors

  1. Search for Christopher M. Lowery in:

  2. Search for Andrew J. Fraass in:

Contributions

Both authors contributed to data interpretation, figure plotting, and writing and editing the manuscript. A.J.F. wrote the R code and performed the morphometric measurements.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Christopher M. Lowery.

Supplementary information

  1. Supplementary Information

    Supplementary Analysis, Supplementary Figures 1 and 2 and Supplementary Table 1

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-019-0835-0

Further reading