Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human activities might influence oncogenic processes in wild animal populations

Abstract

Based on the abundant studies available on humans showing clear associations between rapid environmental changes and the rate of neoplasia, we propose that human activities might increase cancer rate in wild populations through numerous processes. Most of the research on this topic has concentrated on wildlife cancer prevalence in environments that are heavily contaminated with anthropogenic chemicals. Here, we propose that human activities might also increase cancer rate in wild populations through additional processes including light pollution, accidental (for example, human waste) or intentional (for example, bird feeders) wildlife feeding (and the associated change of diet), or reduction of genetic diversity in human-impacted habitats. The human species can thus be defined as an oncogenic species, moderating the environment in the way that it causes cancer in other wild populations. As human impacts on wildlife are predicted to increase rather than decrease (for example, in the context of urbanization), acknowledging the possible links between human activity and cancer in wild populations is crucial.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the relationships between human activities and the physiological and molecular pathways impacted that might affect cancer prevalence in wild populations.

Similar content being viewed by others

References

  1. Pellegriti, G., Frasca, F., Regalbuto, C., Squarito, S. & Vigneri, R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J. Cancer Epidemiol. 2013, 965212 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. Chaturvedi, A. K. et al. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J. Clin. Oncol. 31, 4550–4559 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Hochberg, M. E. & Noble, R. J. A framework for how environment contributes to cancer risk. Ecol. Lett. 20, 117–134 (2017).

    PubMed  Google Scholar 

  4. Madsen, T. et al. in Ecology and Evolution of Cancer (eds Ujvari, B., Roche, B. & Thomas, F.) 11–46 (Academic Press, London, 2017).

  5. Martineau, D. et al. Pathology and toxicology of beluga whales from the St. Lawrence Estuary, Quebec, Canada. Past, present and future. Environ. Health Perspect. 110, 285–292 (2002).

    PubMed  PubMed Central  Google Scholar 

  6. Moller, A. P., Bonisoli-Alquati, A. & Mousseau, T. A. High frequency of albinism and tumours in free-living birds around Chernobyl. Mut. Res.-Gen. Tox. En. 757, 52–59 (2013).

    CAS  Google Scholar 

  7. Randhawa, N., Gulland, F., Ylitalo, G. M., Delong, R. & Mazet, J. A. Sentinel California sea lions provide insight into legacy organochlorine exposure trends and their association with cancer and infectious disease. One Health 1, 37–43 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Navarro, C., De Lope, F., Marzal, A. & Møller, A. P. Predation risk, host immune response, and parasitism. Behav. Ecol. 15, 629–635 (2004).

    Google Scholar 

  9. Vittecoq, M. et al. Turning oncogenic factors into an ally in the war against cancer. Trends Ecol. Evol. 28, 628–635 (2013).

    PubMed  Google Scholar 

  10. Loomis, D. et al. The carcinogenicity of outdoor air pollution. Lancet Oncol. 14, 1262–1263 (2013).

    CAS  PubMed  Google Scholar 

  11. Hamra, G. B. et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ. Health Perspect. 122, 906–911 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. McAloose, D. & Newton, A. L. Wildlife cancer: a conservation perspective. Nat. Rev. Cancer 9, 517–526 (2009).

    CAS  PubMed  Google Scholar 

  13. Martel, L., Gagnon, M. J., Masse, R., Leclerc, A. & Tremblay, L. Polycyclic aromatic hydrocarbons in sediments from the Saguenay Fjord, Canada. Bull. Environ. Contam. Toxicol. 37, 133–140 (1986).

    CAS  PubMed  Google Scholar 

  14. Black, J. J. & Baumann, P. C. Carcinogens and cancers in freshwater fishes. Environ. Health Perspect. 90, 27–33 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown, E. R. et al. Frequency of fish tumors found in a polluted watershed as compared to nonpolluted Canadian waters. Cancer Res. 33, 189–198 (1973).

    CAS  PubMed  Google Scholar 

  16. Hinton, D. E. et al. Resolving mechanisms of toxicity while pursuing ecotoxicological relevance? Mar. Pollut. Bull. 51, 635–648 (2005).

    CAS  PubMed  Google Scholar 

  17. Fisk, A. T. et al. An assessment of the toxicological significance of anthropogenic contaminants in Canadian Arctic wildlife. Sci. Total Environ. 351, 57–93 (2005).

    PubMed  Google Scholar 

  18. Tabb, M. & Blumberg, B. New modes of action for endocrine disrupting chemicals. Mol. Endocrinol. 20, 475–482 (2006).

    CAS  PubMed  Google Scholar 

  19. Serdar, B., Leblanc, W. G., Norris, J. M. & Dickinson, L. M. Potential effects of polychlorinated biphenyls (PCBs) and selected organochlorine pesticides (OCPs) on immune cells and blood biochemistry measures: a cross-sectional assessment of the NHANES 2003-2004 data. Environ. Health 13, 114 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Ylitalo, G. M. et al. The role of organochlorines in cancer-associated mortality in California sea lions (Zalophus calif ornianus). Mar. Pollut. Bull. 50, 30–39 (2005).

    CAS  PubMed  Google Scholar 

  21. Noshchenko, A. G., Bondar, O. Y. & Drozdova, V. D. Radiation-induced leukemia risk among those aged 0–20 at the time of the Chernobyl accident: a case-control study in the Ukraine. Int. J. Cancer 127, 412–426 (2010).

    CAS  PubMed  Google Scholar 

  22. Tondel, M., Lindgren, P., Hjalmarsson, P., Hardell, L. & Persson, B. Increased incidence of malignancies in Sweden after the Chernobyl accident – a promoting effect? Am. J. Ind. Med. 49, 159–168 (2006).

    PubMed  Google Scholar 

  23. Yamashita, S. & Thomas, G. (eds) Thyroid Cancer and Nuclear Accidents: Long-Term Effects of Chernobyl and Fukushima (Academic Press, 2017).

  24. Teuten, E. L. et al. Transport and release of chemicals from plastics to the environment and to wildlife. Phil. Trans. R. Soc. B 364, 2027–2045 (2009).

    CAS  PubMed  Google Scholar 

  25. Doherty, L. F., Bromer, J. G., Zhou, Y., Aldad, T. S. & Taylor, H. S. In utero exposure to diethylstilbestrol (DES) orbisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism link in gendocrine disruptors to breast cancer. Horm. Cancer 1, 146–155 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tarapore, P. et al. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PLoS ONE 9, e90332 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Weinhouse, C. Dose-dependent incidence of hepatic tumors in adult mice following perinatal exposure to bisphenol A. Environ. Health Perspect. 122, 485–491 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Erren, T., Zeuß, D., Steffany, F. & Meyer-Rochow, B. Increase of wildlife cancer: an echo of plastic pollution? Nat. Rev. Cancer 9, 842–842 (2009).

    CAS  PubMed  Google Scholar 

  29. Ndong, J. R., Blanchet, P. & Multigner, L. Pesticides and prostate cancer: epidemiological data. Bull. Cancer 96, 171–180 (2009).

    CAS  PubMed  Google Scholar 

  30. Settimi, L., Masina, A., Andrion, A. & Axelson, O. Prostate cancer and exposure to pesticides in agricultural settings. Int. J. Cancer 104, 458–461 (2003).

    CAS  PubMed  Google Scholar 

  31. Parron, T., Alarcon, R., Requena, M. D. M. & Hernandez, A. Increased breast cancer risk in women with environmental exposure to pesticides. Toxicol. Lett. 196, S180 (2010).

    Google Scholar 

  32. Alavanja, M. C., Ross, M. K. & Bonner, M. R. Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA Cancer J. Clin. 63, 120–142 (2013).

    PubMed  Google Scholar 

  33. Chepesiuk, R. Missing the dark: health effects of light pollution. Environ. Health Perspect. 117, A20–A27 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. Blask, D. E. et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res. 65, 11174–11184 (2005).

    CAS  PubMed  Google Scholar 

  35. Hardeland, R., Pandi-Perumal, S. R. & Cardinali, D. P. Melatonin. Int. J. Biochem. Cell Biol. 38, 313–316 (2006).

    CAS  PubMed  Google Scholar 

  36. Dauchy, R. T. et al. Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats. Comp. Med. 60, 348–356 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, Y. et al. Melatonin for the prevention and treatment of cancer. Oncotarget 8, 39896–39921 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Russart, K. L. G. & Nelson, R. J. Light at night as an environmental endocrine disruptor. Physiol. Behav. 190, 82–89 (2018).

    CAS  PubMed  Google Scholar 

  39. Raap, T., Pinxten, R. & Eens, M. Artificial light at night disrupts sleep in female great tits (Parus major) during the nestling period, and is followed by a sleep rebound. Environ. Pollut. 215, 125–134 (2016).

    CAS  PubMed  Google Scholar 

  40. Roche, B., Møller, A. P., Degregori, J. & Thomas, F. in Ecology and Evolution of Cancer (eds Ujvari, B., Roche, B. & Thomas, F.) 181–191 (Academic Press, London, 2017).

  41. Sepp, T., McGraw, K. J., Kaasik, A. & Giraudeau, M. A review of urban impacts on avian life-history evolution: does city living lead to slower pace of life? Glob. Change Biol. 24, 1452–1469 (2018).

    Google Scholar 

  42. Reale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Phil. Trans. R. Soc. B 365, 4051–4063 (2010).

    PubMed  Google Scholar 

  43. Simopoulos, A. P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56, 365–379 (2002).

    CAS  PubMed  Google Scholar 

  44. Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: a review and management recommendations. Biol. Conserv. 204, 163–174 (2016).

    Google Scholar 

  45. Fischer, J. R., Jain, A. V., Shipes, D. A. & Osborne, J. S. Aflatoxin contamination of corn used as bait for deer in the southeastern United States. J. Wildl. Dis. 31, 570–572 (1995).

    CAS  PubMed  Google Scholar 

  46. Oberheu, D. G. & Dabbert, C. B. Aflatoxin production in supplemental feeders provided for northern bobwhite in Texas and Oklahoma. J. Wildl. Dis. 37, 475–480 (2001).

    CAS  PubMed  Google Scholar 

  47. Zain, M. E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 15, 129–144 (2011).

    CAS  Google Scholar 

  48. Quist, C. F. et al. Evaluation of low-level aflatoxin in the diet of white-tailed deer. J. Wildl. Dis. 33, 112–121 (1997).

    CAS  PubMed  Google Scholar 

  49. Blanco, G., Junza, A., Segarra, D., Barbosa, J. & Barrón, D. Wildlife contamination with fluoroquinolones from livestock: widespread occurrence of enrofloxacin and marbofloxacin in vultures. Chemosphere 144, 1536–1543 (2016).

    CAS  PubMed  Google Scholar 

  50. Mäkinen, M., Forbes, P. D. & Stenbäck, F. Quinolone antibacterials: a new class of photochemical carcinogens. J. Photochem. Photobiol. B 37, 182–187 (1997).

    PubMed  Google Scholar 

  51. Knapp, C. R. et al. Physiological effects of tourism and associated food provisioning in an endangered iguana. Conserv. Physiol. 1, cot032 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. Felton, A. M. et al. Interactions between ungulates, forests, and supplementary feeding: the role of nutritional balancing in determining outcomes. Mammal. Res. 62, 1–7 (2017).

    Google Scholar 

  53. Gnagnarella, P., Gandini, S., La Vecchia, C. & Maisonneuve, P. Glycemic index, glycemic load, and cancer risk: a meta-analysis. Am. J. Clin. Nutr. 87, 1793–1801 (2008).

    CAS  PubMed  Google Scholar 

  54. Cust, A. E. et al. Total dietary carbohydrate, sugar, starch and fibre intakes in the European prospective investigation into cancer and nutrition. Eur. J. Clin. Nutr. 63, S37–S60 (2007).

    Google Scholar 

  55. Ferrari, P. et al. Dietary fiber intake and risk of hormonal receptor-defined breast cancer in the European prospective investigation into cancer and nutrition study. Am. J. Clin. Nutr. 97, 344–353 (2013).

    CAS  PubMed  Google Scholar 

  56. Ames, B. N. & Wakimoto, P. Are vitamin and mineral deficiencies a major cancer risk? Nat. Rev. Cancer 2, 694–704 (2002).

    CAS  PubMed  Google Scholar 

  57. Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife-pathogen dynamics: a review and meta-analysis. Ecol. Lett. 18, 483–495 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. 5, cox030 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. Herrera-Dueñas, A., Pineda-Pampliega, J., Antonio-García, M. T. & Aguirre, J. I. The influence of urban environments on oxidative stress balance: a case study on the house sparrow in the Iberian Peninsula. Front. Ecol. Evol. 5, 106 (2017).

    Google Scholar 

  60. Teyssier, A. et al. Inside the guts of the city: urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. 612, 1276–1286 (2018).

    CAS  PubMed  Google Scholar 

  61. Kakumanu, M. L. et al. Honey bee gut microbiome is altered by in-hive pesticide exposures. Front. Microbiol. 7, 1255 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Bestion, E. et al. Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat. Ecol. Evol. 1, 0161 (2017).

    Google Scholar 

  63. Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep. 5, 14862 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. Elife 16, 4 (2015).

    Google Scholar 

  65. Stothart, M. R. et al. Stress and the microbiome: linking glucocorticoids to bacterial community dynamics in wild red squirrels. Biol. Lett. 12, 20150875 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. Gomez, A. et al. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol. Ecol. 24, 2551–2565 (2015).

    CAS  PubMed  Google Scholar 

  67. Chang, C. W., Huang, B. H., Lin, S. M., Huang, C. L. & Liao, P. C. Changes of diet and dominant intestinal microbes in farmland frogs. BMC Microbiol. 16, 33 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Altizer, S. et al. Food for contagion: synthesis and future directions for studying host-parasite responses to resource shifts in anthropogenic environments. Phil. Trans. R. Soc. B 373, 20170102 (2018).

    PubMed  Google Scholar 

  69. Roy, S. & Trinchieri, G. Microbiota: a key orchestrator of cancer therapy. Nat. Rev. Cancer 17, 271–285 (2017).

    CAS  PubMed  Google Scholar 

  70. Bhatt, A. P., Redinbo, M. R. & Bultman, S. J. The role of the microbiome in cancer development and therapy. CA Cancer J. Clin. 67, 326–344 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Wilcoxen, T. E. et al. Effects of bird-feeding activities on the health of wild birds. Conserv. Physiol 3, cov058 (2015).

    Google Scholar 

  72. Ujvari, B. et al. Genetic diversity, inbreeding and cancer. Proc. R. Soc. B 285, 20172589 (2018).

    PubMed  Google Scholar 

  73. Smith, S. & Hughes, J. Microsatellite and mitochondrial DNA variation defines island genetic reservoirs for reintroductions of an endangered Australian marsupial, Perameles bougainville. Conserv. Genet. 9, 547 (2007).

    Google Scholar 

  74. Joslin, J. O. et al. Viral papilloma and squamous cell carcinomas in snow leopards (Uncia uncia). In: Proc. Am. Assoc. Zoo Vet./Int. Assoc. Aquatic Anim. Med. Joint Conf. 155–158 (IAAAM, 2000).

  75. Szpiech, Z. A. Long runs of homozygosity are enriched for deleterious variation. Am. J. Hum. Genet. 93, 90–102 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hosking, F. J. et al. Genome-wide homozygosity signatures and childhood acute lymphoblastic leukemia risk. Blood 115, 4472–4477 (2010).

    CAS  PubMed  Google Scholar 

  77. Denic, S., Frampton, C. & Nicholls, M. G. Risk of cancer in an inbred population. Cancer Detect. Prev. 31, 263–269 (2007).

    PubMed  Google Scholar 

  78. Hu, Y. et al. Earliest evidence for commensal processes of cat domestication. Proc. Natl Acad. Sci. USA 111, 116–120 (2014).

    CAS  PubMed  Google Scholar 

  79. Marsden, C. D. et al. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc. Natl Acad. Sci. USA 113, 152–157 (2016).

    CAS  PubMed  Google Scholar 

  80. Vascellari, M., Baioni, E., Ru, G., Carminato, A. & Mutinelli, F. Animal tumour registry of two provinces in northern Italy: incidence of spontaneous tumours in dogs and cats. BMC Vet. Res. 5, 39 (2009).

    PubMed  PubMed Central  Google Scholar 

  81. Browning, H. M., Gulland, F. M. D., Colegrove, K. M. & Hall, A. J. Common cancer in a wild animal: the California sea lion (Zalophus californianus) as an emerging model for carcinogenesis. Phil. Trans. R. Soc. B 370, 20140228 (2015).

    PubMed  Google Scholar 

  82. Funk, W. C. et al. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Mol. Ecol. 25, 2176–2194 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Vickers, T. W. et al. Pathology and epidemiology of ceruminous gland tumors among endangered Santa Catalina Island foxes (Urocyon littoralis catalinae) in the Channel Islands. PLoS ONE 10, e0143211 (2015).

    PubMed  PubMed Central  Google Scholar 

  84. Sasidharan, S. P. et al. Comparative genetics of sarcoid tumour-affected and non-affected mountain zebra (Equus zebra) populations. S. Afr. J. Wildl. Res. 41, 36–49 (2011).

    Google Scholar 

  85. Jacqueline, C. et al. Infections and cancer: the “fifty shades of immunity” hypothesis. BMC Cancer 17, 257 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. Lebarbenchon, C., Brown, S. P., Poulin, R., Gauthier-Clerc, M. & Thomas, F. Evolution of pathogens in a man‐made world. Mol. Ecol. 17, 475–484 (2008).

    PubMed  Google Scholar 

  87. Lambert, M. J. & Portfors, C. V. Adaptive sequence convergence of the tumor suppressor ADAMTS9 between small-bodied mammals displaying exceptional longevity. Aging 9, 573–582 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Moret, Y. & Schmid-Hempel, P. Immune defence in bumble-bee offspring. Nature 414, 506–506 (2001).

    CAS  PubMed  Google Scholar 

  89. Thomas, F. et al. Malignant cells, an underappreciated component of animal evolutionary ecology. Nat. Ecol. Evol. 1, 1592–1595 (2017).

    PubMed  Google Scholar 

  90. Sorvari, J., Rantala, L. M., Rantala, M. J., Hakkarainen, H. & Eeva, T. Heavy metal pollution disturbs immune response in wild ant populations. Environ. Pollut. 145, 324–328 (2007).

    CAS  PubMed  Google Scholar 

  91. Eeva, T., Belskii, E. & Kuranov, B. Environmental pollution affects genetic diversity in wild bird populations. Mutat. Res. 608, 8–15 (2006).

    CAS  PubMed  Google Scholar 

  92. Feist, S. W., Stentiford, G. D., Kent, M. L., Ribeiro Santos, A. & Lorance, P. Histopathological assessment of liver and gonad pathology in continental slope fish from the northeast Atlantic Ocean. Mar. Environ. Res. 106, 42–50 (2015).

    CAS  PubMed  Google Scholar 

  93. Troïanowski, M., Mondy, N., Dumet, A., Arcanjo, C. & Lengagne, T. Effects of traffic noise on tree frog stress levels, immunity, and color signaling. Conserv. Biol. 31, 1132–1140 (2017).

    PubMed  Google Scholar 

  94. Bedrosian, T. A., Fonken, L. K., Walton, J. C. & Nelson, R. J. Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters. Biol. Lett. 7, 468–471 (2011).

    PubMed  PubMed Central  Google Scholar 

  95. Morris, K. M., Wright, B., Grueber, C. E., Hogg, C. & Belov, K. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii). Mol. Ecol. 24, 3860–3872 (2015).

    CAS  PubMed  Google Scholar 

  96. Van Straalen, N. M. & Timmermans, M. J. T. M. Genetic variation in toxicant-stressed populations: an evaluation of the “genetic erosion” hypothesis. Hum. Ecol. Risk Assess. 8, 983–1002 (2002).

    Google Scholar 

  97. Turner, A. K., Begon, M., Jackson, J. A., Bradley, J. E. & Paterson, S. Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population. PLoS Genet. 7, e1002343 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Marechal, L., Semple, S., Majolo, B., Qarroc, M., Heistermann, M. & MacLarnona, A. Impacts of tourism on anxiety and physiological stress levels in wild male Barbary macaques. Biol. Conserv. 144, 2188–2193 (2011).

    Google Scholar 

  99. Moreno-Smith, M., Lutgendorf, S. K. & Sood, A. K. Impact of stress on cancer metastasis. Future Oncol. 6, 1863–1881 (2010).

    PubMed  PubMed Central  Google Scholar 

  100. Penn, I. & Starzl, T. E. Immunosuppression and cancer. Transplant. Proc. 5, 943–947 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Tomlinson, I. P. M., Novelli, M. R. & Bodmer, W. F. The mutation rate and cancer. Proc. Natl Acad. Sci. USA 93, 14800–14803 (1996).

    CAS  PubMed  Google Scholar 

  102. Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free Rad. Biol. Med. 49, 1603–1616 (2010).

    CAS  PubMed  Google Scholar 

  103. Zur Hausen, H. & De Villiers, E. M. Cancer “causation” by infections—individual contributions and synergistic networks. Semin. Oncol. 42, 207–222 (2014).

    Google Scholar 

  104. Vucenik, I. & Stains, J. P. Obesity and cancer risk: evidence, mechanisms, and recommendations. Ann. NY Acad. Sci. 1271, 37–43 (2012).

    CAS  PubMed  Google Scholar 

  105. Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Thomas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giraudeau, M., Sepp, T., Ujvari, B. et al. Human activities might influence oncogenic processes in wild animal populations. Nat Ecol Evol 2, 1065–1070 (2018). https://doi.org/10.1038/s41559-018-0558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0558-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer