Thermal limits to the geographic distributions of shallow-water marine species


Temperature profoundly affects species’ geographic ranges, but the extent to which it limits contemporary range edges has been difficult to assess from laboratory experiments of thermal tolerance. The persistence of populations depends on temperature-mediated outcomes of ecological and demographic processes across all stages of a species’ life history, as well as any adaptation to local temperature regimes. We assessed the relationships between sea temperature and observed distributional ranges for 1,790 shallow-water marine species from 10 animal classes and found remarkable consistencies in trends in realized thermal limits among taxa and ocean basins, as well as general agreement with previous laboratory findings. Realized thermal niches increase from the Equator towards cold–temperate locations, despite an opposite trend in geographic range size. Species’ cool distribution limits are best predicted by the magnitude of seasonality within their range, while a relatively firm thermal barrier exists on the equatorward range edge for temperate species. Our findings of consistencies in realized thermal limits indicate potential limits to adaptation among common marine species and highlight the value of realized thermal niches for predicting species’ distributional dynamics in warming seas.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Realized thermal niches as a result of latitude and sea temperature gradients.
Fig. 2: Overall geographic, longitudinal and latitudinal range extents.


  1. 1.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Woodward, F. I. Climate and Plant Distribution (Cambridge Univ. Press, Cambridge, 1987).

  4. 4.

    Edgar, G. et al. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity. Sci. Adv. (in the press).

  5. 5.

    Lee-Yaw, J. A. et al. A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. Ecol. Lett. 19, 710–722 (2016).

    Article  PubMed  Google Scholar 

  6. 6.

    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    CAS  PubMed  Google Scholar 

  7. 7.

    Gaston, K. J. & Fuller, R. A. The sizes of species’ geographic ranges. J. Appl. Ecol. 46, 1–9 (2009).

    Article  Google Scholar 

  8. 8.

    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Article  Google Scholar 

  9. 9.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).

    Article  Google Scholar 

  10. 10.

    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    Article  PubMed  Google Scholar 

  11. 11.

    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).

    Article  PubMed  Google Scholar 

  12. 12.

    Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).

    Article  PubMed  Google Scholar 

  13. 13.

    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B 267, 739–745 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article  Google Scholar 

  16. 16.

    Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).

    Article  Google Scholar 

  17. 17.

    Payne, N. L. & Smith, J. A. An alternative explanation for global trends in thermal tolerance. Ecol. Lett. 20, 70–77 (2017).

    Article  PubMed  Google Scholar 

  18. 18.

    Mora, C. et al. High connectivity among habitats precludes the relationship between dispersal and range size in tropical reef fishes. Ecography 35, 89–96 (2012).

    Article  Google Scholar 

  19. 19.

    Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912 (2016).

    Article  Google Scholar 

  20. 20.

    Papacostas, K. J. & Freestone, A. L. Latitudinal gradient in niche breadth of brachyuran crabs. Glob. Ecol. Biogeogr. 25, 207–217 (2016).

    Article  Google Scholar 

  21. 21.

    Roy, K., Jablonski, D. & Valentine, J. W. Eastern Pacific molluscan provinces and latitudinal diversity gradient: no evidence for “Rapoport’s rule”. Proc. Natl Acad. Sci. USA 91, 8871–8874 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Rohde, K., Heap, M. & Heap, D. Rapoport’s rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. Am. Nat. 142, 1–16 (1993).

    Article  Google Scholar 

  23. 23.

    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Gaston, K. J., Blackburn, T. M. & Spicer, J. I. Rapoport’s rule: time for an epitaph? Trends Ecol. Evol. 13, 70–74 (1998).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Pörtner, H. O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. A 132, 739–761 (2002).

    Article  PubMed  Google Scholar 

  27. 27.

    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    Article  PubMed  Google Scholar 

  28. 28.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Article  Google Scholar 

  29. 29.

    Figueira, W. F., Biro, P., Booth, D. J. & Valenzuela, V. C. Performance of tropical fish recruiting to temperate habitats: role of ambient temperature and implications of climate change. Mar. Ecol. Prog. Ser. 384, 231–239 (2009).

    Article  Google Scholar 

  30. 30.

    Last, P. R. et al. Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Glob. Ecol. Biogeogr. 20, 58–72 (2011).

    Article  Google Scholar 

  31. 31.

    O’Connor, M. I. et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl Acad. Sci. USA 104, 1266–1271 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Gaylord, B. & Gaines, S. D. Temperature or transport? Range limits in marine species mediated solely by flow. Am. Nat. 155, 769–789 (2000).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Angert, A. L., Sheth, S. N. & Paul, J. R. Incorporating population-level variation in thermal performance into predictions of geographic range shifts. Integr. Comp. Biol. 51, 733–750 (2011).

    Article  PubMed  Google Scholar 

  34. 34.

    Bennett, S., Wernberg, T., Arackal Joy, B., de Bettignies, T. & Campbell, A. H. Central and rear-edge populations can be equally vulnerable to warming. Nat. Commun. 6, 10280 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).

    Article  Google Scholar 

  36. 36.

    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).

    Article  Google Scholar 

  37. 37.

    Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401 (2015).

    Article  Google Scholar 

  38. 38.

    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Spanier, E. & Galil, B. S. Lessepsian migration: a continuous biogeographical process. Endeavour 15, 102–106 (1991).

    Article  Google Scholar 

  40. 40.

    Campbell, H. A., Fraser, K. P. P., Bishop, C. M., Peck, L. S. & Egginton, S. Hibernation in an Antarctic fish: on ice for winter. PLoS ONE 3, e1743 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Masuda, R. Seasonal and interannual variation of subtidal fish assemblages in Wakasa Bay with reference to the warming trend in the Sea of Japan. Env. Biol. Fish. 82, 387–399 (2008).

    Article  Google Scholar 

  42. 42.

    Edgar, G. J. & Barrett, N. S. Effects of the declaration of marine reserves on Tasmanian reef fishes, invertebrates and plants. J. Exp. Mar. Biol. Ecol. 242, 107–144 (1999).

    Article  Google Scholar 

  43. 43.

    Costello, M. J., Darwall, W. R. & Lysaght, S. in Biology and Ecology of Shallow Coastal Waters: Proc. 28th European Marine Biology Symp., Institute of Marine Biology of Crete, Iraklio, Crete, 1993 (eds Eleftheriou, A., Smith, C. & Ansell, A. D.) 343–350 (Olsen & Olsen, Fredensborg, 1995).

  44. 44.

    Bates, A. E. et al. Defining and observing stages of climate-mediated range shifts in marine systems. Glob. Environ. Change 26, 27–38 (2014).

    Article  Google Scholar 

  45. 45.

    Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L. & Beretta, G. Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar. Coast. Shelf Sci. 72, 102–114 (2007).

    Article  Google Scholar 

  46. 46.

    Orton, J. H. Sea-temperature, breeding and distribution in marine animals. J. Mar. Biol. Assoc. India 12, 339–366 (1920).

    Article  Google Scholar 

  47. 47.

    Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947).

    Article  Google Scholar 

  48. 48.

    Comte, L. & Olden, J. D. Climatic vulnerability of the world's freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).

  49. 49.

    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).

    Article  Google Scholar 

  50. 50.

    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Peck, L. S. & Conway, L. Z. The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. Geol. Soc. Lond. Spec. Publ. 177, 441–450 (2000).

    Article  Google Scholar 

  53. 53.

    Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).

    Article  Google Scholar 

  54. 54.

    Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinformatics 9, 307 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references


We thank the many RLS divers who participated in collection of the data used in the analyses and who provide ongoing expertise and commitment to the program, as well as A. Cooper, J. Berkhout, M. Davey, J. Hulls, E. Oh, E. Clausius and J. Stuart-Smith at the University of Tasmania. Development of the RLS was supported by the former Commonwealth Environment Research Facilities Program. Analyses were supported by the Marine Biodiversity Hub—a collaborative partnership supported through the Australian Government’s National Environmental Science Programme—and the Australian Research Council. Additional funding and support for RLS field surveys was provided by grants from The Ian Potter Foundation and Parks Australia.

Author information




R.D.S.-S. and A.E.B. conceived the idea. G.J.E. and R.D.S.-S. assisted with data collection. R.D.S.-S. drafted the manuscript with contributions from A.E.B. and G.J.E. A.E.B. performed the data analysis and prepared the plots.

Corresponding author

Correspondence to Rick D. Stuart-Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Tables 1–9, Supplementary Figures 1–3

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stuart-Smith, R.D., Edgar, G.J. & Bates, A.E. Thermal limits to the geographic distributions of shallow-water marine species. Nat Ecol Evol 1, 1846–1852 (2017).

Download citation

Further reading