Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Greater evolutionary divergence of thermal limits within marine than terrestrial species

Abstract

There is considerable uncertainty regarding which ecosystems are most vulnerable to warming. Current understanding of organismal sensitivity is largely centred on species-level assessments that do not consider variation across populations. Here we used meta-analysis to quantify upper thermal tolerance variation across 305 populations from 61 terrestrial, freshwater, marine and intertidal taxa. We found strong differentiation in heat tolerance across populations in marine and intertidal taxa but not terrestrial or freshwater taxa. This is counter to the expectation that increased connectivity in the ocean should reduce intraspecific variation. Such adaptive differentiation in the ocean suggests there may be standing genetic variation at the species level to buffer climate impacts. Assessments of vulnerability to warming should account for variation in thermal tolerance among populations (or the lack thereof) to improve predictions about climate vulnerability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual figure outlining hypotheses predicting population-level divergence in thermal limits across realms.
Fig. 2: Population-level patterns in heat tolerance.
Fig. 3: Pairwise heat tolerance comparisons between populations using Hedges’ g. Larger effect sizes indicate greater differentiation in heat tolerance.
Fig. 4: Estimated warming tolerance.

Similar content being viewed by others

Data availability

The thermal tolerance data that support the findings of this study are available in a figshare repository78.

Code availability

Custom analysis scripts are available in a figshare repository78.

References

  1. Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    Article  CAS  Google Scholar 

  2. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    Article  CAS  Google Scholar 

  3. Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    Article  CAS  Google Scholar 

  4. Hughes, A. R. et al. Predicting the sensitivity of marine populations to rising temperatures. Front. Ecol. Environ. 17, 17–24 (2019).

    Article  Google Scholar 

  5. Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).

    Article  Google Scholar 

  6. Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Philos. Trans. R. Soc. B 374, 20180550 (2019).

    Article  Google Scholar 

  7. Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Change Biol. 25, 4147–4164 (2019).

    Article  Google Scholar 

  8. Kelly, M. W., Sanford, E. & Grosberg, R. K. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc. R. Soc. B 279, 349–356 (2012).

    Article  Google Scholar 

  9. Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    Article  Google Scholar 

  10. Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).

    Article  Google Scholar 

  11. Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).

    Article  CAS  Google Scholar 

  12. Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).

    Article  Google Scholar 

  13. Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).

    Article  CAS  Google Scholar 

  14. Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401 (2015).

    Article  Google Scholar 

  15. Barley, J. M. et al. Limited plasticity in thermally tolerant ectotherm populations: evidence for a trade-off. Proc. R. Soc. B 288, 202110765 (2021).

    Article  Google Scholar 

  16. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Article  Google Scholar 

  17. Grummer, J. A. et al. Aquatic landscape genomics and environmental effects on genetic variation. Trends Ecol. Evol. 34, 641–654 (2019).

    Article  Google Scholar 

  18. Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).

    Article  Google Scholar 

  19. Lester, S. E., Ruttenberg, B. I., Gaines, S. D. & Kinlan, B. P. The relationship between dispersal ability and geographic range size. Ecol. Lett. 10, 745–758 (2007).

    Article  Google Scholar 

  20. Kinlan, B. P., Gaines, S. D. & Lester, S. E. Propagule dispersal and the scales of marine community process. Diversity Distrib. 11, 139–148 (2005).

    Article  Google Scholar 

  21. Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 2014).

  22. Haldane, J. B. S. The relation between density regulation and natural selection. Proc. R. Soc. Lond. B 145, 306–308 (1956).

    Article  CAS  Google Scholar 

  23. Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).

    Article  CAS  Google Scholar 

  24. Burgess, S. C., Treml, E. A. & Marshall, D. J. How do dispersal costs and habitat selection influence realized population connectivity? Ecology 93, 1378–1387 (2012).

    Article  Google Scholar 

  25. Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).

    Article  Google Scholar 

  26. Caplat, P. et al. Looking beyond the mountain: dispersal barriers in a changing world. Front. Ecol. Environ. 14, 261–268 (2016).

    Article  Google Scholar 

  27. Nickols, K. J., Wilson White, J., Largier, J. L. & Gaylord, B. Marine population connectivity: reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).

    Article  Google Scholar 

  28. Pinsky, M. L., Comte, L. & Sax, D. F. Unifying climate change biology across realms and taxa. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.04.011 (2022).

  29. Fourcade, Y. et al. Habitat amount and distribution modify community dynamics under climate change. Ecol. Lett. 24, 950–957 (2021).

    Article  Google Scholar 

  30. Kappes, H., Tackenberg, O. & Haase, P. Differences in dispersal- and colonization-related traits between taxa from the freshwater and the terrestrial realm. Aquat. Ecol. 48, 73–83 (2014).

    Article  CAS  Google Scholar 

  31. Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).

    Article  Google Scholar 

  32. Kappes, H. & Haase, P. Slow, but steady: dispersal of freshwater molluscs. Aquat. Sci. 74, 1–14 (2012).

    Article  Google Scholar 

  33. Sasaki, M. & Dam, H. G. Global patterns in copepod thermal tolerance. J. Plankton Res. 43, 598–609 (2021).

    Article  Google Scholar 

  34. Cereja, R. Critical thermal maxima in aquatic ectotherms. Ecol. Indic. 119, 106856 (2020).

    Article  Google Scholar 

  35. Vinagre, C. et al. Upper thermal limits and warming safety margins of coastal marine species – Indicator baseline for future reference. Ecol. Indic. 102, 644–649 (2019).

    Article  Google Scholar 

  36. Muñoz, M. M. The Bogert effect, a factor in evolution. Evolution 76, 49–66 (2022).

    Article  Google Scholar 

  37. Muñoz, M. M. & Bodensteiner, B. L. Janzen’s hypothesis meets the Bogert effect: connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integr. Org. Biol. 1, oby002 (2019).

  38. Spence, A. R. & Tingley, M. W. The challenge of novel abiotic conditions for species undergoing climate-induced range shifts. Ecography 43, 1571–1590 (2020).

    Article  Google Scholar 

  39. Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    Article  CAS  Google Scholar 

  40. Steele, J. H., Brink, K. H. & Scott, B. E. Comparison of marine and terrestrial ecosystems: suggestions of an evolutionary perspective influenced by environmental variation. ICES J. Mar. Sci. 76, 50–59 (2019).

    Article  Google Scholar 

  41. Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Article  Google Scholar 

  42. Chuang, A. & Peterson, C. R. Expanding population edges: theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).

    Article  Google Scholar 

  43. Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).

    Article  CAS  Google Scholar 

  44. Gaston, K. J. et al. Macrophysiology: a conceptual reunification. Am. Nat. 174, 595–612 (2009).

    Article  Google Scholar 

  45. Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

    Article  CAS  Google Scholar 

  46. Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).

    Article  CAS  Google Scholar 

  47. Cooper, H., Hedges, L. V. & Valentine, J. C. The Handbook of Research Synthesis and Meta-Analysis (Russel Sage Foundation, 2009).

  48. Gleser, L. & Olkin, I. in The Handbook of Research Synthesis and Meta-Analysis (eds Cooper, H. et al.) Ch. 19 (Russel Sage Foundation, 2009).

  49. Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).

    Article  Google Scholar 

  50. Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).

    CAS  Google Scholar 

  51. Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’’ animals against climate warming. Proc. Natl Acad. Sci. USA 10, 3835–3840 (2009).

    Article  Google Scholar 

  52. Denney, D. A., Jameel, M. I., Bemmels, J. B., Rochford, M. E. & Anderson, J. T. Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change. AoB Plants 12, plaa005 (2020).

  53. Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    Article  CAS  Google Scholar 

  54. Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).

    Article  Google Scholar 

  55. Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. High-resolution global water temperature modeling. Water Resour. Res. 55, 2760–2778 (2019).

    Article  Google Scholar 

  56. Todgham, A. E. & Stillman, J. H. Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr. Comp. Biol. 53, 539–544 (2013).

    Article  Google Scholar 

  57. Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    Article  CAS  Google Scholar 

  58. Pespeni, M. H. & Palumbi, S. R. Signals of selection in outlier loci in a widely dispersing species across an environmental mosaic. Mol. Ecol. 22, 3580–3597 (2013).

    Article  CAS  Google Scholar 

  59. Hoey, J. A. & Pinsky, M. L. Genomic signatures of environmental selection despite near-panmixia in summer flounder. Evolut. Appl. 11, 1732–1747 (2018).

    Article  CAS  Google Scholar 

  60. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    Article  CAS  Google Scholar 

  61. Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).

    Article  Google Scholar 

  62. Morelli, T. L. et al. Managing Climate Change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).

    Article  Google Scholar 

  63. Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2009).

    Article  Google Scholar 

  64. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Internal Med. 151, 264–270 (2009).

    Article  Google Scholar 

  65. O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. https://doi.org/10.1111/brv.12721 (2021).

  66. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, 89 (2021).

  67. Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 1198 (2018).

  68. Lancaster, L. T. & Humphreys, A. M. Global variation in the thermal tolerances of plants. Proc. Natl Acad. Sci. USA 117, 13580–13587 (2020).

    Article  CAS  Google Scholar 

  69. Rohatgi, A. WebPlotDigitizer (2020); https://automeris.io/WebPlotDigitizer

  70. Assis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).

    Article  Google Scholar 

  71. Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article  Google Scholar 

  72. Dee, D. P. et al. The ERA–interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorolog. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  73. Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).

    Article  CAS  Google Scholar 

  74. Helmuth, B. Thermal biology of rocky intertidal mussels: quantifying body temperature using climatological data. Ecology 80, 15–34 (1999).

    Article  Google Scholar 

  75. Bell, E. C. Environmental and morphological influences on thallus temperature and desiccation of the intertidal alga Mastocarpus papillatus Kützing. J. Exp. Mar. Biol. Ecol. 191, 29–55 (1995).

    Article  Google Scholar 

  76. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  77. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Software 36, 1–48 (2010).

    Article  Google Scholar 

  78. Sasaki, M. et al. Data for ‘greater local adaptation to temperature in the ocean than on land’. figshare https://doi.org/10.6084/m9.figshare.20173571 (2022).

Download references

Acknowledgements

This article arose from the Research Coordination Network, ‘Evolution in Changing Seas’ (US National Science Foundation #1764316). We thank K. Lotterhos, M. Albecker, D. Bolnick, J. Kelley and G. Trussel for developing and organizing the network. Additional support was provided by the US National Science Foundation (#2023571 to B.S.C.). M.S. was supported by US National Science Foundation grant #1947965. We thank H.G. Dam, E.D. Grosholz and L.M. Komoroske for comments on earlier manuscript drafts. Finally, we are very grateful to the primary authors who collected the empirical data.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceptualized and designed the paper. M.S., J.M.B., S.G.-W., C.G.H., M.W.K., A.B.P., S.N.S., A.R.V. and B.S.C. assembled the data; M.S. analysed the data and produced figures. M.S. and B.S.C. drafted the paper; all authors contributed to discussion, writing and interpretation.

Corresponding authors

Correspondence to Matthew Sasaki or Brian S. Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Richelle Tanner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Flowchart breaking down the number of studies processed during screening, and the number of thermal limits used in our analyses.

A summary of the number of studies processed during screening, the number of thermal limits before and after major filtering, and the number of population pairs and effect size estimates used in our analyses.

Extended Data Fig. 2 Comparison of within- and between-species latitudinal patterns in upper and lower thermal limits.

Comparison of mean intraspecific slope estimates (± SE) for upper and lower thermal tolerance values against latitude for terrestrial taxa (n = 37 lower thermal limit slopes; n = 43 upper thermal limit slopes). Studies examining elevational differences are excluded. For comparison, interspecific slope estimates are included from Sunday et al.5.

Extended Data Fig. 3 Comparison of thermal limit divergence between motile and non-motile taxa.

Absolute difference in upper thermal limits between motile and non-motile taxa (motility defined here as whether or not an individual could control their microhabitat sufficiently to regulate body temperature using environmental thermal heterogeneity), calculated using both (a) unweighted raw mean differences (n = 215 non-motile & 269 motile) and (b) inverse-weighted standardized mean differences (Hedges’ g; n = 79 non-motile & 246 motile). Inset plots show the values for intertidal taxa alone. In all cases, the box plot’s horizontal line represents the median, while box limits illustrate the first and third quartiles. Whiskers extend from the box limits to the minimum and maximum values (not including outlier values that are more than 1.5 times the interquartile range from the box limits). Tables underneath each plot show the number of population pairs or effect size estimates for each realm and motility type.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5.

Reporting Summary.

Supplementary Table 1

Contains the three Supplementary Tables as a single workbook with multiple tabs. Table legends are included on the first tab.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, M., Barley, J.M., Gignoux-Wolfsohn, S. et al. Greater evolutionary divergence of thermal limits within marine than terrestrial species. Nat. Clim. Chang. 12, 1175–1180 (2022). https://doi.org/10.1038/s41558-022-01534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-022-01534-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing