Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Groundwater recharge is sensitive to changing long-term aridity

Subjects

Abstract

Sustainable groundwater use relies on adequate rates of groundwater recharge, which are expected to change with climate change. However, climate impacts on recharge remain uncertain due to a paucity of measurements of recharge trends globally. Here we leverage the relationship between climatic aridity and long-term recharge measurements at 5,237 locations globally to identify regions where recharge is most sensitive to changes in climatic aridity. Recharge is most sensitive to climate changes in regions where potential evapotranspiration slightly exceeds precipitation, meaning even modest aridification can substantially decrease groundwater recharge. Future climate-induced recharge changes are expected to be dominated by precipitation changes, whereby changes in groundwater recharge will be amplified relative to precipitation changes. Recharge is more sensitive to changes in aridity than global hydrological models suggest. Consequently, the effects of climatic changes on groundwater replenishment and their impacts on the sustainability of groundwater use by humans and ecosystems probably exceed previous predictions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Groundwater recharge and climatic aridity.
Fig. 2: Comparison of predicted versus observed recharge and recharge sensitivity for several global recharge predictions.
Fig. 3: Global pattern of the climate sensitivity of groundwater recharge.
Fig. 4: Impacts of projected climate changes on groundwater recharge.

Similar content being viewed by others

Data availability

Data used in this study are available via the cited sources. Precipitation data are available at https://www.worldclim.org/data/v1.4/worldclim14.html. Potential evapotranspiration and aridity data are available at https://cgiarcsi.community/data/global-aridity-and-petdatabase/. Recharge data are available at https://opendata.eawag.ch/dataset/globalscale_groundwater_moeck.

Climate projections are provided at https://zenodo.org/doi/10.5281/zenodo.10605454 (ref. 44).

Code availability

The code to reproduce the results of this study is available at https://zenodo.org/doi/10.5281/zenodo.10605454 (ref. 44).

References

  1. Bierkens, M. F. & Wada, Y. Non-renewable groundwater use and groundwater depletion: a review. Environ. Res. Lett. 14, 063002 (2019).

    Article  Google Scholar 

  2. Gleeson, T., Wada, Y., Bierkens, M. F. & van Beek, L. P. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    Article  CAS  Google Scholar 

  3. Gleeson, T., Cuthbert, M., Ferguson, G. & Perrone, D. Global groundwater sustainability, resources, and systems in the anthropocene. Annu. Rev. Earth Planet. Sci. 48, 431–463 (2020).

    Article  CAS  Google Scholar 

  4. Cuthbert, M. O., Gleeson, T., Bierkens, M. F. P., Ferguson, G. & Taylor, R. G. Defining renewable groundwater use and its relevance to sustainable groundwater management. Water Resour. Res. 59, e2022WR032831 (2023).

    Article  Google Scholar 

  5. Moeck, C. et al. A global-scale dataset of direct natural groundwater recharge rates: a review of variables, processes and relationships. Sci. Total Environ. 717, 137042 (2020).

    Article  CAS  Google Scholar 

  6. Berghuijs, W. R., Luijendijk, E., Moeck, C. & Allen, S. T. Recharge observations indicate strengthened groundwater connections to surface fluxes. Geophys. Res. Lett. 49, e2022GL099010 (2021).

    Article  Google Scholar 

  7. Scanlon, B. R. et al. Global synthesis of groundwater recharge in semi-arid and arid regions. Hydrol. Process. 20, 3335–3370 (2006).

    Article  CAS  Google Scholar 

  8. Mohan, C., Western, A. W., Wei, Y. & Saft, M. Predicting groundwater recharge for varying land cover and climate conditions – a global meta-study. Hydrol. Earth Syst. Sci. 22, 2689–2703 (2018).

    Article  Google Scholar 

  9. Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

    Article  Google Scholar 

  10. Reinecke, R. et al. Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study. Hydrol. Earth Syst. Sci. 25, 787–810 (2021).

    Article  CAS  Google Scholar 

  11. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  12. Refsgaard, J. C. et al. Climate change impacts on groundwater hydrology – where are the main uncertainties and can they be reduced? Hydrol. Sci. J. 61, 2312–2324 (2016).

    Article  Google Scholar 

  13. Mileham, L., Taylor, R. G., Todd, M., Tindimugaya, C. & Thompson, J. The impact of climate change on groundwater recharge and runoff in a humid, equatorial catchment: sensitivity of projections to rainfall intensity. Hydrol. Sci. J. 54, 727–738 (2009).

    Article  Google Scholar 

  14. Jannis, E., Adrien, M., Annette, A. & Peter, H. Climate change effects on groundwater recharge and temperatures in Swiss alluvial aquifers. J. Hydrol. X 11, 100071 (2021).

    Google Scholar 

  15. Leterme, B., Mallants, D. & Jacques, D. Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1D. Hydrol. Earth Syst. Sci. 16, 2485–2497 (2012).

    Article  Google Scholar 

  16. Hartmann, A., Gleeson, T., Wada, Y. & Wagener, T. Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proc. Natl Acad. Sci. USA 114, 2842–2847 (2017).

    Article  CAS  Google Scholar 

  17. West, C., Rosolem, R., MacDonald, A. M., Cuthbert, M. O., & Wagener, T. Understanding process controls on groundwater recharge variability across Africa through recharge landscapes. J. Hydrol. 612, 127967 (2022).

  18. Döll, P. & Fiedler, K. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci. 12, 863–885 (2008).

    Article  Google Scholar 

  19. Gleeson, T. et al. GMD perspective: the quest to improve the evaluation of groundwater representation in continental-to global-scale models. Geosci. Model Dev. 14, 7545–7571 (2021).

    Article  Google Scholar 

  20. Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).

    Article  CAS  Google Scholar 

  21. West, C. et al. Ground truthing global-scale model estimates of groundwater recharge across Africa. Sci. Total Environ. 858, 159765 (2023).

    Article  CAS  Google Scholar 

  22. Roderick, M. L. & Farquhar, G. D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. 47, W00G07 (2011).

    Article  Google Scholar 

  23. Scanlon, B. R., Healy, R. W. & Cook, P. G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrol. J. 10, 18–39 (2002).

    CAS  Google Scholar 

  24. Walker, D. et al. Insights from a multi-method recharge estimation comparison study. Groundwater 57, 245–258 (2019).

    Article  CAS  Google Scholar 

  25. MacDonald, A. M. et al. Mapping groundwater recharge in Africa from ground observations and implications for water security. Environ. Res. Lett. 16, 034012 (2021).

    Article  Google Scholar 

  26. Müller Schmied, H. et al. The global water resources and use model WaterGAP v2.2d: model description and evaluation. Geosci. Model Dev. 14, 1037–1079 (2021).

    Article  Google Scholar 

  27. de Graaf, I. E. M., Sutanudjaja, E. H., van Beek, L. P. H. & Bierkens, M. F. P. A high-resolution global-scale groundwater model. Hydrol. Earth Syst. Sci. 19, 823–837 (2015).

    Article  Google Scholar 

  28. de Graaf, I. E. M., Gleeson, T., van Beek, L. R., Sutanudjaja, E. H. & Bierkens, M. F. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).

    Article  Google Scholar 

  29. Taylor, R. G. et al. Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nat. Clim. Change 3, 374–378 (2013).

    Article  Google Scholar 

  30. Beven, K. & Germann, P. Macropores and water flow in soils revisited. Water Resour. Res. 49, 3071–3092 (2013).

    Article  Google Scholar 

  31. Trabucco, A. & Zomer, R. J. Global Aridity and PET Database (CGIAR, 2009); https://cgiarcsi.community/data/global-aridity-and-pet-database/

  32. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  33. Gudmundsson, L., Greve, P. & Seneviratne, S. I. The sensitivity of water availability to changes in the aridity index and other factors—a probabilistic analysis in the Budyko space. Geophys. Res. Lett. 43, 6985–6994 (2016).

    Article  Google Scholar 

  34. Berghuijs, W. R., Larsen, J. R., van Emmerik, T. H. & Woods, R. A. A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors. Water Resour. Res. 53, 8475–8486 (2017).

    Article  Google Scholar 

  35. Jaramillo, F. et al. Fewer basins will follow their budyko curves under global warming and fossil‐fueled development. Water Resour. Res. 58, e2021WR031825 (2022).

    Article  Google Scholar 

  36. Ziehn, T. et al. The Australian Earth system model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 70, 193–214 (2020).

    Article  Google Scholar 

  37. Danabasoglu, G. et al. The community earth system model version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).

    Article  Google Scholar 

  38. Döscher, R. et al. The EC-earth3 Earth system model for the Coupled Model Intercomparison project 6. Geosci. Model Dev. 15, 2973–3020 (2022).

    Article  Google Scholar 

  39. Walters, D. et al. The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev. 12, 1909–1963 (2019).

    Article  CAS  Google Scholar 

  40. Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).

    Article  Google Scholar 

  41. Cheruy, F. et al. Improved near-surface continental climate in IPSL-CM6A-LR by combined evolutions of atmospheric and land surface physics. J. Adv. Model. Earth Syst. 12, e2019MS002005 (2020).

    Article  Google Scholar 

  42. Mauritsen, T. et al. Developments in the MPI-M Earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).

    Article  Google Scholar 

  43. Müller, W. A. et al. A higher-resolution version of the Max Planck Institute Earth system model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 10, 1383–1413 (2018).

    Article  Google Scholar 

  44. Berghuijs, W. Data and code supporting analysis of the climate sensitivity of recharge (Version 1) (Data set). Zenodo https://doi.org/10.5281/zenodo.10605455 (2024).

Download references

Acknowledgements

The contributions of F.J. were funded by the Swedish National Space Agency (180/18), Projects 2022-02148 and 2022-01570 of the Swedish Research Council for Sustainable Development (FORMAS), and Project 2021-05774 of the Swedish Research Council (VR).

Author information

Authors and Affiliations

Authors

Contributions

W.R.B. conceived the idea and analysed the data. W.R.B., R.A.C., S.T.A., S.J., Y.v.d.V., F.J., E.L. and C.M. co-designed the study, discussed results and contributed to writing the paper.

Corresponding author

Correspondence to Wouter R. Berghuijs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Nick Cartwright, Alan MacDonald and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Nonlinearity of recharge.

A comparison of recharge non-linearity for a linear or non-linear bucket model with varying climatic aridity indicates that non-linearity may need to be included in the model to lead to more realistic recharge dynamics (see Methods). Recharge is normalized by its maximum recharge ratio for that b-value to highlight the general non-linearity in the recharge climatic aridity relationship.

Extended Data Fig. 2 Impacts of projected climate changes on groundwater recharge for SSP5–8.5.

Projected relative recharge changes (2050–2080 versus 1980–2010) (%) induced by changes in precipitation (a), potential evaporation (b), and climatic aridity (c). Results depicted here are for SSP5–8.5 and show broadly similar spatial patterns to those presented in the main text Fig. 4.

Extended Data Table 1 CMIP6 models used in the study

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berghuijs, W.R., Collenteur, R.A., Jasechko, S. et al. Groundwater recharge is sensitive to changing long-term aridity. Nat. Clim. Chang. 14, 357–363 (2024). https://doi.org/10.1038/s41558-024-01953-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-024-01953-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing