Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Terrestrial carbon dynamics in an era of increasing wildfire

Abstract

In an increasingly flammable world, wildfire is altering the terrestrial carbon balance. However, the degree to which novel wildfire regimes disrupt biological function remains unclear. Here, we synthesize the current understanding of above- and belowground processes that govern carbon loss and recovery across diverse ecosystems. We find that intensifying wildfire regimes are increasingly exceeding biological thresholds of resilience, causing ecosystems to convert to a lower carbon-carrying capacity. Growing evidence suggests that plants compensate for fire damage by allocating carbon belowground to access nutrients released by fire, while wildfire selects for microbial communities with rapid growth rates and the ability to metabolize pyrolysed carbon. Determining controls on carbon dynamics following wildfire requires integration of experimental and modelling frameworks across scales and ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wildfire impacts above- and belowground carbon stocks by combusting biomass and surface soil horizons.
Fig. 2: Aboveground and belowground carbon stocks vary in their vulnerability to fire.
Fig. 3: Studies including carbon and model-relevant traits exhibit strong variability in both the magnitude and direction of response following wildfire.
Fig. 4: Conceptual figure of wildfire-affected carbon trajectories.
Fig. 5: Global wildfire carbon emissions.

Similar content being viewed by others

References

  1. Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article  Google Scholar 

  2. Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).

    Article  Google Scholar 

  3. Boer, M. M., Resco de Dios, V. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).

    Article  Google Scholar 

  4. Brando, P. M. et al. Droughts, wildfires, and forest carbon cycling: a pantropical synthesis. Annu. Rev. Earth Planet. Sci. 47, 555–581 (2019).

    Article  CAS  Google Scholar 

  5. Pellegrini, A. F. et al. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nat. Geosci. 15, 5–13 (2022).

    Article  CAS  Google Scholar 

  6. Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    Article  CAS  Google Scholar 

  7. van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Article  Google Scholar 

  8. Coop, J. D. et al. Wildfire-driven forest conversion in western North American landscapes. BioScience 70, 659–673 (2020).

    Article  Google Scholar 

  9. Hill, A. P., Nolan, C. J., Hemes, K. S., Cambron, T. W. & Field, C. B. Low-elevation conifers in California’s Sierra Nevada are out of equilibrium with climate. PNAS Nexus 2, pgad004 (2023).

    Article  Google Scholar 

  10. Turco, M. et al. Anthropogenic climate change impacts exacerbate summer forest fires in California. Proc. Natl Acad. Sci. USA 120, e2213815120 (2023).

    Article  CAS  Google Scholar 

  11. Hurteau, M. D., Liang, S., Westerling, A. L. & Wiedinmyer, C. Vegetation–fire feedback reduces projected area burned under climate change. Sci. Rep. 9, 2838 (2019).

  12. Li, F., Bond-Lamberty, B. & Levis, S. Quantifying the role of fire in the Earth system—part 2: impact on the net carbon balance of global terrestrial ecosystems for the 20th century. Biogeosciences 11, 1345–1360 (2014).

    Article  Google Scholar 

  13. Burton, C. et al. Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment Simulator vn4.9 (JULES). Geosci. Model Dev. 12, 179–193 (2019).

    Article  CAS  Google Scholar 

  14. Sheehan, T., Bachelet, D. & Ferschweiler, K. Fire, CO2, and climate effects on modeled vegetation and carbon dynamics in western Oregon and Washington. PLoS ONE 14, e0210989 (2019).

  15. Emmett, K. D., Renwick, K. M. & Poulter, B. Adapting a dynamic vegetation model for regional biomass, plant biogeography, and fire modeling in the Greater Yellowstone Ecosystem: evaluating LPJ-GUESS-LMfireCF. Ecol. Model. 440, 109417 (2021).

  16. Yue, C., Ciais, P., Cadule, P., Thonicke, K. & Van Leeuwen, T. T. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—part 2: carbon emissions and the role of fires in the global carbon balance. Geosci. Model Dev. 8, 1285–1297 (2015).

    Article  Google Scholar 

  17. Shuman, J. K. et al. Reimagine fire science for the Anthropocene. PNAS Nexus 1, pgac115 (2022).

  18. Li, F. et al. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 19, 12545–12567 (2019).

    Article  CAS  Google Scholar 

  19. Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 7, eabh2646 (2021).

    Article  Google Scholar 

  20. Bryant, K. N. et al. Boosts in leaf-level photosynthetic capacity aid Pinus ponderosa recovery from wildfire. Environ. Res. Lett. 17, 114034 (2022).

    Article  Google Scholar 

  21. Malik, A. A. & Bouskill, N. J. Drought impacts on microbial trait distribution and feedback to soil carbon cycling. Funct. Ecol. 36, 1442–1456 (2022).

    Article  CAS  Google Scholar 

  22. Nelson, A. R. et al. Wildfire-dependent changes in soil microbiome diversity and function. Nat. Microbiol. 7, 1419–1430 (2022).

    Article  CAS  Google Scholar 

  23. Beringer, J. et al. Fire in Australian savannas: from leaf to landscape. Glob. Chang. Biol. 21, 62–81 (2015).

    Article  Google Scholar 

  24. Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. USA 116, 6193–6198 (2019).

    Article  CAS  Google Scholar 

  25. Bär, A., Michaletz, S. T. & Mayr, S. Fire effects on tree physiology. New Phytol. 223, 1728–1741 (2019).

    Article  Google Scholar 

  26. Flanagan, N. E., Wang, H. J., Winton, S. & Richardson, C. J. Low-severity fire as a mechanism of organic matter protection in global peatlands: thermal alteration slows decomposition. Glob. Chang. Biol. 26, 3930–3946 (2020).

    Article  Google Scholar 

  27. Dove, N. C., Taş, N. & Hart, S. C. Ecological and genomic responses of soil microbiomes to high-severity wildfire: linking community assembly to functional potential. ISME J. 16, 1853–1863 (2022).

    Article  CAS  Google Scholar 

  28. Nolan, R. H., Boer, M. M., Resco de Dios, V., Caccamo, G. & Bradstock, R. A. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys. Res. Lett. 43, 4229–4238 (2016).

    Article  Google Scholar 

  29. Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).

    Article  CAS  Google Scholar 

  30. Bowring, S. P. K., Jones, M. W., Ciais, P., Guenet, B. & Abiven, S. Pyrogenic carbon decomposition critical to resolving fire’s role in the Earth system. Nat. Geosci. 15, 135–142 (2022).

    Article  CAS  Google Scholar 

  31. Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).

    Article  Google Scholar 

  32. Randerson, J., Van Der Werf, G., Giglio, L., Collatz, G. & Kasibhatla, P. Global Fire Emissions Database v.4.1 (GFEDv4) (ORNL DAAC, 2015).

  33. Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).

    Article  Google Scholar 

  34. Clarke, H. et al. Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nat. Commun. 13, 7161 (2022).

    Article  CAS  Google Scholar 

  35. Murphy, B. P., Lehmann, C. E., Russell‐Smith, J. & Lawes, M. J. Fire regimes and woody biomass dynamics in Australian savannas. J. Biogeogr. 41, 133–144 (2014).

    Article  Google Scholar 

  36. Kelly, L. T. et al. Fire and biodiversity in the Anthropocene. Science 370, eabb0355 (2020).

    Article  CAS  Google Scholar 

  37. Shive, K. L. et al. Ancient trees and modern wildfires: declining resilience to wildfire in the highly fire-adapted giant sequoia. For. Ecol. Manag. 511, 120110 (2022).

    Article  Google Scholar 

  38. Hewitt, R. E., Hollingsworth, T. N., Stuart Chapin, F.III & Lee Taylor, D. Fire-severity effects on plant–fungal interactions after a novel tundra wildfire disturbance: implications for Arctic shrub and tree migration. BMC Ecol. 16, 25 (2016).

    Article  Google Scholar 

  39. Lin, S. R., Liu, Y. H. & Huang, X. Y. Climate-induced Arctic-boreal peatland fire and carbon loss in the 21st century. Sci. Total Environ. 796, 148924 (2021).

  40. Buma, B., Hayes, K., Weiss, S. & Lucash, M. Short-interval fires increasing in the Alaskan boreal forest as fire self-regulation decays across forest types. Sci. Rep. 12, 4901 (2022).

  41. Maciel, E. A. et al. Defaunation and changes in climate and fire frequency have synergistic effects on aboveground biomass loss in the Brazilian savanna. Ecol. Model. 454, 109628 (2021).

    Article  Google Scholar 

  42. Silva, C. V. J. et al. Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philos. Trans. R. Soc. B 373, 20180043 (2018).

    Article  Google Scholar 

  43. Partelli‐Feltrin, R., Smith, A. M., Adams, H. D., Kolden, C. A. & Johnson, D. M. Short‐ and long‐term effects of fire on stem hydraulics in Pinus ponderosa saplings. Plant Cell Environ. 44, 696–705 (2020).

  44. Stavi, I. Wildfires in grasslands and shrublands: a review of impacts on vegetation, soil, hydrology, and geomorphology. Water 11, 1042 (2019).

  45. Johnson, L. C. & Matchett, J. R. Fire and grazing regulate belowground processes in tallgrass prairie. Ecology 82, 3377–3389 (2001).

    Article  Google Scholar 

  46. Simpson, K. J. et al. Resprouting grasses are associated with less frequent fire than seeders. New Phytol. 230, 832–844 (2021).

    Article  Google Scholar 

  47. O’Connor, R. C., Taylor, J. H. & Nippert, J. B. Browsing and fire decreases dominance of a resprouting shrub in woody encroached grassland. Ecology 101, e02935 (2020).

    Article  Google Scholar 

  48. Hoffmann, W. A. et al. Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil. Ecology 90, 1326–1337 (2009).

    Article  Google Scholar 

  49. Hood, S. M., Varner, J. M., van Mantgem, P. & Cansler, C. A. Fire and tree death: understanding and improving modeling of fire-induced tree mortality. Environ. Res. Lett. 13, 113004 (2018).

  50. Varner, J. M. et al. Tree crown injury from wildland fires: causes, measurement and ecological and physiological consequences. New Phytol. 231, 1676–1685 (2021).

    Article  Google Scholar 

  51. Michaletz, S. T., Johnson, E. & Tyree, M. Moving beyond the cambium necrosis hypothesis of post‐fire tree mortality: cavitation and deformation of xylem in forest fires. New Phytol. 194, 254–263 (2012).

    Article  CAS  Google Scholar 

  52. Bär, A., Nardini, A. & Mayr, S. Post-fire effects in xylem hydraulics of Picea abies, Pinus sylvestris and Fagus sylvatica. New Phytol. 217, 1484–1493 (2018).

    Article  Google Scholar 

  53. Partelli‐Feltrin, R. et al. Death from hunger or thirst? Phloem death, rather than xylem hydraulic failure, as a driver of fire‐induced conifer mortality. New Phytol. 237, 1154–1163 (2023).

    Article  Google Scholar 

  54. O’Brien, J. J., Hiers, J. K., Mitchell, R. J., Varner, J. M. & Mordecai, K. Acute physiological stress and mortality following fire in a long-unburned longleaf pine ecosystem. Fire Ecol. 6, 1–12 (2010).

    Article  Google Scholar 

  55. Asbjornsen, H., Velázquez-Rosas, N., García-Soriano, R. & Gallardo-Hernández, C. Deep ground fires cause massive above- and below-ground biomass losses in tropical montane cloud forests in Oaxaca, Mexico. J. Trop. Ecol. 21, 427–434 (2005).

    Article  Google Scholar 

  56. Dove, N. C., Safford, H. D., Bohlman, G. N., Estes, B. L. & Hart, S. C. High‐severity wildfire leads to multi‐decadal impacts on soil biogeochemistry in mixed‐conifer forests. Ecol. Appl. 30, e02072 (2020).

  57. Knelman, J., Schmidt, S., Garayburu-Caruso, V., Kumar, S. & Graham, E. Multiple, compounding disturbances in a forest ecosystem: fire increases susceptibility of soil edaphic properties, bacterial community structure, and function to change with extreme precipitation event. Soil Syst. 3, 40 (2019).

    Article  CAS  Google Scholar 

  58. Pereira-Silva, E. F. L., Casals, P., Sodek, L., Delitti, W. B. C. & Vallejo, V. R. Post-fire nitrogen uptake and allocation by two resprouting herbaceous species with contrasting belowground traits. Environ. Exp. Bot. 159, 157–167 (2019).

    Article  CAS  Google Scholar 

  59. Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Chang. Biol. 15, 976–991 (2009).

    Article  Google Scholar 

  60. Song, Z. P., Wang, X. M., Liu, Y. H., Luo, Y. Q. & Li, Z. L. Allocation strategies of carbon, nitrogen, and phosphorus at species and community levels with recovery after wildfire. Front. Plant Sci. 13, 850353 (2022).

  61. Hu, M. J. & Wan, S. Q. Effects of fire and nitrogen addition on photosynthesis and growth of three dominant understory plant species in a temperate forest. J. Plant Ecol. 12, 759–768 (2019).

    Article  Google Scholar 

  62. Fu, P. et al. Advances in field-based high-throughput photosynthetic phenotyping. J. Exp. Bot. 73, 3157–3172 (2022).

    Article  CAS  Google Scholar 

  63. Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resour. Res. 56, e2019WR026058 (2020).

    Article  Google Scholar 

  64. Holden, S. R., Gutierrez, A. & Treseder, K. K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16, 34–46 (2013).

    Article  CAS  Google Scholar 

  65. Carson, C. M. & Zeglin, L. H. Long-term fire management history affects N-fertilization sensitivity, but not seasonality, of grassland soil microbial communities. Soil Biol. Biochem. 121, 231–239 (2018).

    Article  CAS  Google Scholar 

  66. Wang, G., Li, J. R., Ravi, S., Theiling, B. P. & Sankey, J. B. Fire changes the spatial distribution and sources of soil organic carbon in a grassland–shrubland transition zone. Plant Soil 435, 309–321 (2019).

    Article  CAS  Google Scholar 

  67. Findlay, N. et al. Long-term frequent fires do not decrease topsoil carbon and nitrogen in an Afromontane grassland. Afr. J. Range Forage Sci. 39, 44–55 (2022).

    Article  Google Scholar 

  68. Tas, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. 8, 1904–1919 (2014).

    Article  CAS  Google Scholar 

  69. Zhou, X., Sun, H., Heinonsalo, J., Pumpanen, J. & Berninger, F. Microbial biodiversity contributes to soil carbon release: a case study on fire disturbed boreal forests. FEMS Microbiol. Ecol. 98, fiac074 (2022).

  70. Garcia-Pausas, J., Romanya, J. & Casals, P. Post-fire recovery of soil microbial functions is promoted by plant growth. Eur. J. Soil Sci. 73, e13290 (2022).

  71. Li, W. K., Liu, X. D. & Niu, S. K. Differential responses of the acidobacterial community in the topsoil and subsoil to fire disturbance in Pinus tabulaeformis stands. PeerJ 7, e8047 (2019).

  72. Salo, K., Domisch, T. & Kouki, J. Forest wildfire and 12 years of post-disturbance succession of saprotrophic macrofungi (Basidiomycota, Ascomycota). For. Ecol. Manag. 451, 117454 (2019).

  73. Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571 (2019).

    Article  CAS  Google Scholar 

  74. Barcenas-Moreno, G. & Baath, E. Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biol. Biochem. 41, 2517–2526 (2009).

    Article  CAS  Google Scholar 

  75. Fultz, L. M. et al. Forest wildfire and grassland prescribed fire effects on soil biogeochemical processes and microbial communities: two case studies in the semi-arid Southwest. Appl. Soil Ecol. 99, 118–128 (2016).

    Article  Google Scholar 

  76. Xiang, X. J. et al. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Sci. Rep. 4, 3829 (2014).

  77. Waldrop, M. P. & Harden, J. W. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Glob. Chang. Biol. 14, 2591–2602 (2008).

    Article  Google Scholar 

  78. Treseder, K. K., Mack, M. C. & Cross, A. Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol. Appl. 14, 1826–1838 (2004).

    Article  Google Scholar 

  79. Barcenas-Moreno, G., Garcia-Orenes, F., Mataix-Solera, J. & Mataix-Beneyto, J. Plant community influence on soil microbial response after a wildfire in Sierra Nevada National Park (Spain). Sci. Total Environ. 573, 1265–1274 (2016).

    Article  CAS  Google Scholar 

  80. Whitman, T., Woolet, J., Sikora, M., Johnson, D. B. & Whitman, E. Resilience in soil bacterial communities of the boreal forest from one to five years after wildfire across a severity gradient. Soil Biol. Biochem. 172, 108755 (2022).

  81. Pulido-Chavez, M. F., Alvarado, E. C., DeLuca, T. H., Edmonds, R. L. & Glassman, S. I. High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests. For. Ecol. Manag. 485, 118923 (2021).

  82. Qin, Q. Q., Wang, Y., Qiu, C., Zheng, D. C. & Liu, Y. H. Wildfire drives the transition from deterministic- to stochastic-dominated community assembly of abundant bacterial in forest soils. CATENA 215,106290 (2022).

  83. Rincon, A., Santamaria, B. P., Ocana, L. & Verdu, M. Structure and phylogenetic diversity of post-fire ectomycorrhizal communities of maritime pine. Mycorrhiza 24, 131–141 (2014).

    Article  CAS  Google Scholar 

  84. Adkins, J., Docherty, K. M. & Miesel, J. R. Copiotrophic bacterial traits increase with burn severity one year after a wildfire. Front. For. Glob. Chang. 5, 873527 (2022).

  85. Zhou, X. et al. Wildfire effects on soil bacterial community and its potential functions in a permafrost region of Canada. Appl. Soil Ecol. 156, 103713 (2020).

  86. Hemes, K. S., Norlen, C. A., Wang, J. A., Goulden, M. L. & Field, C. B. The magnitude and pace of photosynthetic recovery after wildfire in California ecosystems. Proc. Natl Acad. Sci. USA 120, e2201954120 (2023).

    Article  CAS  Google Scholar 

  87. Ghimire, B., Williams, C. A., Collatz, G. J. & Vanderhoof, M. Fire-induced carbon emissions and regrowth uptake in western U.S. forests: documenting variation across forest types, fire severity, and climate regions. J. Geophys. Res. 117, G03036 (2012).

  88. Chen, J. et al. Contrasting responses after fires of the source components of soil respiration and ecosystem respiration. Eur. J. Soil Sci. 70, 616–629 (2019).

    Article  Google Scholar 

  89. Li, J. Q. et al. Spatiotemporal variability of fire effects on soil carbon and nitrogen: a global meta-analysis. Glob. Chang. Biol. 27, 4196–4206 (2021).

    Article  CAS  Google Scholar 

  90. Beringer, J., Hutley, L. B., Tapper, N. J. & Cernusak, L. A. Savanna fires and their impact on net ecosystem productivity in North Australia. Glob. Chang. Biol. 13, 990–1004 (2007).

    Article  Google Scholar 

  91. Teixeira, J., Souza, L., Le Stradic, S. & Fidelis, A. Fire promotes functional plant diversity and modifies soil carbon dynamics in tropical savanna. Sci. Total Environ. 812, 152317 (2022).

    Article  CAS  Google Scholar 

  92. Sun, Q., Meyer, W. S., Koerber, G. R. & Marschner, P. Rapid recovery of net ecosystem production in a semi-arid woodland after a wildfire. Agric. For. Meteorol. 291, 108099 (2020).

    Article  Google Scholar 

  93. Wang, D. et al. Post-fire co-stimulation of gross primary production and ecosystem respiration in a meadow grassland on the Tibetan Plateau. Agric. For. Meteorol. 303, 108388 (2021).

    Article  Google Scholar 

  94. Amiro, B. D. et al. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J. Geophys. Res. 115, G00K02 (2010).

  95. O’Donnell, J. A. et al. Interactive effects of fire, soil climate, and moss on CO2 fluxes in black spruce ecosystems of interior Alaska. Ecosystems 12, 57–72 (2009).

    Article  Google Scholar 

  96. Wirth, C. et al. Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant Soil 242, 41–63 (2002).

    Article  CAS  Google Scholar 

  97. Holz, A., Wood, S. W., Veblen, T. T. & Bowman, D. M. J. S. Effects of high-severity fire drove the population collapse of the subalpine Tasmanian endemic conifer Athrotaxis cupressoides. Glob. Chang. Biol. 21, 445–458 (2015).

    Article  Google Scholar 

  98. Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).

    Article  CAS  Google Scholar 

  99. Friedlingstein, P., Allen, M., Canadell, J. G., Peters, G. P. & Seneviratne, S. I. Comment on “The global tree restoration potential”. Science 366, eaay8060 (2019).

    Article  Google Scholar 

  100. Leverkus, A. B., Thorn, S., Lindenmayer, D. B. & Pausas, J. G. Tree planting goals must account for wildfires. Science 376, 588–589 (2022).

    Article  CAS  Google Scholar 

  101. Baltzer, J. L. et al. Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proc. Natl Acad. Sci. USA 118, e2024872118 (2021).

    Article  CAS  Google Scholar 

  102. Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).

    Article  Google Scholar 

  103. Li, F., Levis, S. & Ward, D. Quantifying the role of fire in the Earth system—part 1: improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences 10, 2293–2314 (2013).

    Article  CAS  Google Scholar 

  104. Druke, M. et al. Improving the LPJmL4-SPITFIRE vegetation–fire model for South America using satellite data. Geosci. Model Dev. 12, 5029–5054 (2019).

    Article  Google Scholar 

  105. Rabin, S. S. et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 10, 1175–1197 (2017).

    Article  CAS  Google Scholar 

  106. Seo, H. & Kim, Y. Interactive impacts of fire and vegetation dynamics on global carbon and water budget using Community Land Model version 4.5. Geosci. Model Dev. 12, 457–472 (2019).

    Article  CAS  Google Scholar 

  107. Hudiburg, T. W., Higuera, P. E. & Hicke, J. A. Fire-regime variability impacts forest carbon dynamics for centuries to millennia. Biogeosciences 14, 3873–3882 (2017).

    Article  CAS  Google Scholar 

  108. Bartowitz, K. J., Higuera, P. E., Shuman, B. N., McLauchlan, K. K. & Hudiburg, T. W. Post-fire carbon dynamics in subalpine forests of the Rocky Mountains. Fire 2, 58 (2019).

  109. Yang, J. et al. Century-scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance. Glob. Biogeochem. Cycles 29, 1549–1566 (2015).

    Article  CAS  Google Scholar 

  110. Gomes, L. et al. Responses of plant biomass in the Brazilian savanna to frequent fires. Front. For. Glob. Chang. 3, 507710 (2020).

  111. Brando, P. M. et al. The gathering firestorm in southern Amazonia. Sci. Adv. 6, eaay1632 (2020).

  112. Turner, M. G., Braziunas, K. H., Hansen, W. D. & Harvey, B. J. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc. Natl Acad. Sci. USA 116, 11319–11328 (2019).

    Article  CAS  Google Scholar 

  113. Liang, S., Hurteau, M. D. & Westerling, A. L. Response of Sierra Nevada forests to projected climate–wildfire interactions. Glob. Chang. Biol. 23, 2016–2030 (2017).

    Article  Google Scholar 

  114. Miquelajauregui, Y., Cumming, S. G. & Gauthier, S. Sensitivity of boreal carbon stocks to fire return interval, fire severity and fire season: a simulation study of black spruce forests. Ecosystems 22, 544–562 (2019).

    Article  CAS  Google Scholar 

  115. Thornley, J. H. M. & Cannell, M. G. R. Long-term effects of fire frequency on carbon storage and productivity of boreal forests: a modeling study. Tree Physiol. 24, 765–773 (2004).

    Article  CAS  Google Scholar 

  116. Bond-Lamberty, B., Peckham, S. D., Ahl, D. E. & Gower, S. T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450, 89–92 (2007).

    Article  CAS  Google Scholar 

  117. Jones, M. W. et al. Climate change increases the risk of wildfires. ScienceBrief Rev. 116, 117 (2020).

    Google Scholar 

  118. Gomes, L., Miranda, H. S., Silverio, D. V. & Bustamante, M. M. C. Effects and behaviour of experimental fires in grasslands, savannas, and forests of the Brazilian Cerrado. For. Ecol. Manag. 458, 117804 (2020).

  119. Zheng, B. et al. Record-high CO2 emissions from boreal fires in 2021. Science 379, 912–917 (2023).

    Article  CAS  Google Scholar 

  120. Novick, K. A. et al. Informing nature‐based climate solutions for the United States with the best‐available science. Glob. Chang. Biol. 28, 3778–3794 (2022).

  121. Badgley, G. et al. Systematic over‐crediting in California’s forest carbon offsets program. Glob. Chang. Biol. 28, 1433–1445 (2022).

    Article  CAS  Google Scholar 

  122. Friedlingstein, P. et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  Google Scholar 

  123. Haverd, V. et al. The Australian terrestrial carbon budget. Biogeosciences 10, 851–869 (2013).

    Article  Google Scholar 

  124. Haverd, V. et al. Multiple observation types reduce uncertainty in Australia’s terrestrial carbon and water cycles. Biogeosciences 10, 2011–2040 (2013).

    Article  Google Scholar 

  125. Mitchell, S. R., Harmon, M. E. & O’Connell, K. E. B. Carbon debt and carbon sequestration parity in forest bioenergy production. GCB Bioenergy 4, 818–827 (2012).

  126. Hurteau, M. D. et al. Restoring forest structure and process stabilizes forest carbon in wildfire‐prone southwestern ponderosa pine forests. Ecol. Appl. 26, 382–391 (2016).

    Article  Google Scholar 

  127. Hurteau, M. D. & North, M. Carbon recovery rates following different wildfire risk mitigation treatments. For. Ecol. Manag. 260, 930–937 (2010).

    Article  Google Scholar 

  128. Prichard, S. J. et al. Adapting western North American forests to climate change and wildfires: 10 common questions. Ecol. Appl. 31, e02433 (2021).

    Article  Google Scholar 

  129. Bartowitz, K. J., Walsh, E. S., Stenzel, J. E., Kolden, C. A. & Hudiburg, T. W. Forest carbon emission sources are not equal: putting fire, harvest, and fossil fuel emissions in context. Front. For. Glob. Chang. 5, 867112 (2022).

  130. Spreading Like Wildfire: the Rising Threat of Extraordinary Landscape Fires (United Nations Environment Programme, 2022).

  131. Pausas, J. G. & Keeley, J. E. Wildfires and global change. Front. Ecol. Environ. 19, 387–395 (2021).

    Article  Google Scholar 

  132. Kyker-Snowman, E. et al. Increasing the spatial and temporal impact of ecological research: a roadmap for integrating a novel terrestrial process into an Earth system model. Glob. Chang. Biol. 28, 665–684 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this review was provided through the National Science Foundation, DEB-1553049 and DEB-1655183. Additionally, R.A.B. was supported by the Met Office Hadley Centre Climate Programme funded by DSIT, C.A.K. was supported by USDA NIFA 2022-67019-36435, and J.M. was supported by USDA NIFA 2023-67012-40085. E.G. was supported by the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). EMSL is a United States Department of Energy Office of Science User Facility sponsored by the Biological and Environmental Research Program under contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Contributions

T.H. and L.L. planned the project. All authors contributed to synthesis, figure creation and writing the manuscript.

Corresponding author

Correspondence to Tara Hudiburg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Matthias Boer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Table 1, Methods and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudiburg, T., Mathias, J., Bartowitz, K. et al. Terrestrial carbon dynamics in an era of increasing wildfire. Nat. Clim. Chang. 13, 1306–1316 (2023). https://doi.org/10.1038/s41558-023-01881-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01881-4

This article is cited by

  • Wildfires in 2023

    • Crystal A. Kolden
    • John T. Abatzoglou
    • Piyush Jain

    Nature Reviews Earth & Environment (2024)

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology