Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric influence of forest cover gain and loss on land surface temperature

Abstract

The direct biophysical effects of fine-scale tree cover changes on temperature are not well understood. Here, we show how land surface temperature responds to subgrid gross tree cover changes. We find that in many forests, the biophysical cooling induced by enhanced evapotranspiration due to tree cover gain is greater in magnitude than the warming from tree cover loss. Therefore, the goal of no biophysical warming effects from tree cover changes could be achieved by regaining a fraction of previously lost tree cover areas. This percentage differs between different forest biomes, ranging from 75% in tropical to 83% in temperate forests. Neglecting this asymmetric temperature effect of fine-scale tree cover change ignores the fact that biophysical feedbacks continue to cause surface temperature changes even under net-zero tree cover changes. Thus, it is necessary to account for gross, rather than net, tree cover changes when quantifying the biophysical effects of forests.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global tree cover changes and their direct biophysical effects on daily mean LST.
Fig. 2: Asymmetric biophysical effects of tree cover gain and loss on LST.
Fig. 3: Ratio of fractional tree cover gain to loss for LST neutrality.
Fig. 4: Asymmetric influences of tree cover gain and loss on surface energy balance.
Fig. 5: Influences of tree age on the asymmetric temperature effects of tree cover gain and loss.

Similar content being viewed by others

Data availability

The LST, land cover, evapotranspiration, albedo, forest age and energy flux data used for the analyses in this study are available online as follows: 30 m resolution GFW maps of twenty-first century forest cover change https://glad.earthengine.app/view/global-forest-change; MOD11C3 LST product https://lpdaac.usgs.gov/products/mod11c3v061/; MCD12C1 Land Cover dataset https://lpdaac.usgs.gov/products/mcd12c1v061/; MCD43C3 Albedo product https://lpdaac.usgs.gov/products/mcd43c3v061/; MOD16A2GF ET and LE product https://lpdaac.usgs.gov/products/mod16a2v061/; GLASS Shortwave Radiation product http://www.glass.umd.edu/Download.html; MOD13C2 NDVI product https://lpdaac.usgs.gov/products/mod13c2v061/; drivers of global forest loss https://www.science.org/doi/abs/10.1126/science.aau3445; GLASS ET product http://www.glass.umd.edu/Download.html; PML_V2 ET product https://data.tpdc.ac.cn/zh-hans/data/48c16a8d-d307-4973-abab-972e9449627c/; the latest digital Köppen-Geiger world map http://koeppen-geiger.vu-wien.ac.at/present.htm; global map of planting years https://figshare.com/articles/dataset/A_global_map_of_planting_years_of_plantations/19070084/1; forest cover change data of Canada https://opendata.nfis.org/mapserver/nfis-change_eng.html; forest cover change data of northern Europe https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/change-maps; forest cover change data of eastern Europe https://glad.geog.umd.edu/dataset/eastern-europe-forset-cover-dynamics-1985-2012/; forest cover change data of the United States https://www.mrlc.gov/data; and forest cover change data of the whole tropical region https://forobs.jrc.ec.europa.eu/TMF/.

Code availability

The code used for this analysis is available in a Zenodo repository at https://doi.org/10.5281/zenodo.8088598 (ref. 95).

References

  1. Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

    Article  CAS  Google Scholar 

  2. Le Quéré, C. et al. Global carbon budget 2013. Earth Syst. Sci. Data 6, 235–263 (2014).

    Article  Google Scholar 

  3. Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    Article  Google Scholar 

  4. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  CAS  Google Scholar 

  5. Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    Article  CAS  Google Scholar 

  6. Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).

    Article  CAS  Google Scholar 

  7. Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).

    Article  CAS  Google Scholar 

  8. Mahmood, R. et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 34, 929–953 (2014).

    Article  Google Scholar 

  9. Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7, 432–436 (2017).

    Article  Google Scholar 

  10. Davin, E. L., de Noblet-Ducoudré, N. & Friedlingstein, P. Impact of land cover change on surface climate: relevance of the radiative forcing concept. Geophys. Res. Lett. 34, L13702 (2007).

    Article  Google Scholar 

  11. Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).

    Article  CAS  Google Scholar 

  12. Bright, R. M. et al. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Change 7, 296–302 (2017).

    Article  Google Scholar 

  13. Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 679 (2018).

    Article  Google Scholar 

  14. Xu, R. et al. Contrasting impacts of forests on cloud cover based on satellite observations. Nat. Commun. 13, 670 (2022).

    Article  CAS  Google Scholar 

  15. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  Google Scholar 

  16. Sterling, S., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 3, 385–390 (2013).

    Article  CAS  Google Scholar 

  17. Lejeune, Q., Davin, E. L., Gudmundsson, L., Winckler, J. & Seneviratne, S. I. Historical deforestation locally increased the intensity of hot days in northern mid-latitudes. Nat. Clim. Change 8, 386–390 (2018).

    Article  Google Scholar 

  18. Liu, Z., Ballantyne, A. P. & Cooper, L. A. Biophysical feedback of global forest fires on surface temperature. Nat. Commun. 10, 214 (2019).

    Article  Google Scholar 

  19. Claussen, M., Brovkin, V. & Ganopolski, A. Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys. Res. Lett. 28, 1011–1014 (2001).

    Article  CAS  Google Scholar 

  20. Wang, J. et al. Temperature changes induced by biogeochemical and biophysical effects of bioenergy crop cultivation. Environ. Sci. Technol. 57, 2474–2483 (2023).

    Article  CAS  Google Scholar 

  21. Zhu, L. et al. Comparable biophysical and biogeochemical feedbacks on warming from tropical moist forest degradation. Nat. Geosci. 16, 244–249 (2023).

    Article  CAS  Google Scholar 

  22. Peng, S.-S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).

    Article  CAS  Google Scholar 

  23. Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Change 4, 389–393 (2014).

    Article  Google Scholar 

  24. Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).

    Article  CAS  Google Scholar 

  25. Pickett, S. T. in Long-Term Studies in Ecology: Approaches and Alternatives (ed. Likens, G. E.) 110–135 (Springer, 1989).

  26. Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).

    Article  Google Scholar 

  27. Tong, X. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 11, 129 (2020).

  28. Heinrich, V. H. et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 12, 1785 (2021).

    Article  CAS  Google Scholar 

  29. Ryan, M. G., Binkley, D. & Fownes, J. H. Age-related decline in forest productivity: pattern and process. Adv. Ecol. Res. 27, 213–262 (1997).

    Article  Google Scholar 

  30. Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351, 597–600 (2016).

    Article  CAS  Google Scholar 

  31. Cooper, L. A., Ballantyne, A. P., Holden, Z. A. & Landguth, E. L. Disturbance impacts on land surface temperature and gross primary productivity in the western United States. J. Geophys. Res. Biogeosci. 122, 930–946 (2017).

    Article  Google Scholar 

  32. Randerson, J. T. et al. The impact of boreal forest fire on climate warming. Science 314, 1130–1132 (2006).

    Article  CAS  Google Scholar 

  33. Maness, H., Kushner, P. J. & Fung, I. Summertime climate response to mountain pine beetle disturbance in British Columbia. Nat. Geosci. 6, 65–70 (2013).

    Article  CAS  Google Scholar 

  34. O'Halloran, T. L. et al. Radiative forcing of natural forest disturbances. Glob. Change Biol. 18, 555–565 (2012).

    Article  Google Scholar 

  35. Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).

    Article  CAS  Google Scholar 

  36. Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 14, 23–29 (2021).

    Article  CAS  Google Scholar 

  37. Zhang, Y. & Liang, S. Impacts of land cover transitions on surface temperature in China based on satellite observations. Environ. Res. Lett. 13, 024010 (2018).

    Article  Google Scholar 

  38. Wan, Z., Hook, S. & Hulley, G. MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD11C3.061 (2021).

  39. Friedl, M. & Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MCD12C1.061 (2022).

  40. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article  CAS  Google Scholar 

  41. Su, Y. et al. Quantifying the biophysical effects of forests on local air temperature using a novel three-layered land surface energy balance model. Environ. Int. 132, 105080 (2019).

    Article  Google Scholar 

  42. Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change 5, 756115 (2022).

    Article  Google Scholar 

  43. Davin, E. L. & de Noblet-Ducoudré, N. Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J. Clim. 23, 97–112 (2010).

    Article  Google Scholar 

  44. Su, Y. et al. Aerodynamic resistance and Bowen ratio explain the biophysical effects of forest cover on understory air and soil temperatures at the global scale. Agric. Meteorol. 308, 108615 (2021).

    Article  Google Scholar 

  45. Malhi, Y., Baldocchi, D. D. & Jarvis, P. G. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ. 22, 715–740 (1999).

    Article  CAS  Google Scholar 

  46. Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article  CAS  Google Scholar 

  47. Moore, G. W., Bond, B. J., Jones, J. A., Phillips, N. & Meinzer, F. C. Structural and compositional controls on transpiration in the 40- and 450-year-old riparian forests in western Oregon, USA. Tree Physiol. 24, 481–491 (2004).

    Article  Google Scholar 

  48. Jassal, R. S., Black, T. A., Spittlehouse, D. L., Brümmer, C. & Nesic, Z. Evapotranspiration and water use efficiency in different-aged Pacific Northwest Douglas-fir stands. Agric. Meteorol. 149, 1168–1178 (2009).

    Article  Google Scholar 

  49. Stoy, P. C. et al. Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US. Glob. Change Biol. 12, 2115–2135 (2006).

    Article  Google Scholar 

  50. Du, Z. et al. A global map of planting years of plantations. Sci. Data 9, 141 (2022).

  51. Aryal, D. R., De Jong, B. H. J., Ochoa-Gaona, S., Esparza-Olguin, L. & Mendoza-Vega, J. Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric. Ecosyst. Environ. 195, 220–230 (2014).

    Article  Google Scholar 

  52. Potter, S. et al. Climate change decreases the cooling effect from postfire albedo in boreal North America. Glob. Change Biol. 26, 1592–1607 (2020).

    Article  Google Scholar 

  53. He, T., Liang, S. & Song, D. X. Analysis of global land surface albedo climatology and spatial-temporal variation during 1981–2010 from multiple satellite products. J. Geophys. Res. Atmos. 119, 281–298 (2014).

    Article  Google Scholar 

  54. Gao, F. et al. Multiscale climatological albedo look-up maps derived from MODIS BRDF/albedo products. J. Appl. Remote Sens. 8, 083532 (2014).

    Article  Google Scholar 

  55. Baldocchi, D., Kelliher, F. M., Black, T. A. & Jarvis, P. Climate and vegetation controls on boreal zone energy exchange. Glob. Change Biol. 6, 69–83 (2000).

    Article  Google Scholar 

  56. Oris, F., Asselin, H., Ali, A. A., Finsinger, W. & Bergeron, Y. Effect of increased fire activity on global warming in the boreal forest. Environ. Rev. 22, 206–219 (2014).

    Article  Google Scholar 

  57. Anderson, R. G. et al. Biophysical considerations in forestry for climate protection. Front. Ecol. Environ. 9, 174–182 (2011).

    Article  Google Scholar 

  58. Running, S., Mu, Q., Zhao, M. & Moreno, A. MODIS/Terra Net Evapotranspiration Gap-Filled Yearly L4 Global 500m SIN Grid V061. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD16A3GF.061 (2021).

  59. Yao, Y. J. et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm. Agric. Meteorol. 171, 187–202 (2013).

    Article  Google Scholar 

  60. Zhang, Y. et al. Coupled estimation of 500m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 222, 165–182 (2019).

    Article  Google Scholar 

  61. Tropek, R. et al. Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344, 981–981 (2014).

    Article  CAS  Google Scholar 

  62. Milodowski, D. T., Mitchard, E. T. A. & Williams, M. Forest loss maps from regional satellite monitoring systematically underestimate deforestation in two rapidly changing parts of the Amazon. Environ. Res. Lett. 12, 094003 (2017).

    Article  Google Scholar 

  63. Breidenbach, J. et al. Harvested area did not increase abruptly—how advancements in satellite-based mapping led to erroneous conclusions. Ann. For. Sci. 79, 2 (2022).

  64. Ogle, S. M. et al. Delineating managed land for reporting national greenhouse gas emissions and removals to the United Nations framework convention on climate change. Carbon Balance Manag. 13, 9 (2018).

  65. Hermosilla, T. et al. Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. Int. J. Digit. Earth. 9, 1035–1054 (2016).

    Article  Google Scholar 

  66. Dewitz, J. National Land Cover Database (NLCD) 2019 Products (Ver. 2.0, June 2021) (US Geological Survey, 2021).

  67. Potapov, P. V. et al. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens. Environ. 159, 28–43 (2015).

    Article  Google Scholar 

  68. European Union. Change Maps. Copernicus Land Monitoring Service https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/change-maps (2023).

  69. Guo, J., Gong, P., Dronova, I. & Zhu, Z. Forest cover change in China from 2000 to 2016. Int. J. Remote Sens. 43, 593–606 (2022).

    Article  Google Scholar 

  70. Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).

    Article  Google Scholar 

  71. Barrett, F., McRoberts, R. E., Tomppo, E., Cienciala, E. & Waser, L. T. Remote sensing of environment: a questionnaire-based review of the operational use of remotely sensed data by national forest inventories. Remote Sens. Environ. 174, 279–289 (2016).

    Article  Google Scholar 

  72. McRoberts, R. E. et al. Using a finer resolution biomass map to assess the accuracy of a regional, map-based estimate of forest biomass. Surv. Geophys. 40, 1001–1015 (2019).

    Article  Google Scholar 

  73. Cunningham, D., Cunningham, P. & Fagan, M. E. Identifying biases in global tree cover products: a case study in Costa Rica. Forests 10, 853 (2019).

    Article  Google Scholar 

  74. Sannier, C., McRoberts, R. E. & Fichet, L. V. Suitability of global forest change data to report forest cover estimates at national level in Gabon. Remote Sens. Environ. 173, 326–338 (2016).

    Article  Google Scholar 

  75. Hojas-Gascon, L., Cerutti, P. O., Eva, H., Nasi, R. & Martius, C. Monitoring Deforestation and Forest Degradation in the Context of REDD+: Lessons from Tanzania (CIFOR, 2015).

  76. Pitkänen, T. P. et al. Errors related to the automatized satellite-based change detection of boreal forests in Finland. Int. J. Appl. Earth. Obs. Geoinf. 86, 102011 (2020).

    Google Scholar 

  77. Jutras-Perreault, M. C., Gobakken, T. & Ørka, H. O. Comparison of two algorithms for estimating stand-level changes and change indicators in a boreal forest in Norway. Int. J. Appl. Earth. Obs. Geoinf. 98, 102316 (2021).

    Google Scholar 

  78. Palahí, M. et al. Concerns about reported harvests in European forests. Nature 592, E15–E17 (2021).

    Article  Google Scholar 

  79. Chirici, G. et al. Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series. Ann. For. Sci. 77, 40 (2020).

  80. Timoney, K. P. & Mamet, S. No treeline advance over the last 50 years in subarctic western and central Canada and the problem of vegetation misclassification in remotely sensed data. Écoscience 27, 93–106 (2020).

    Article  Google Scholar 

  81. Guindon, L. et al. Missing forest cover gains in boreal forests explained. Ecosphere 9, e02094 (2018).

    Article  Google Scholar 

  82. Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE 14, e0213368 (2019).

    Article  CAS  Google Scholar 

  83. Vanden, B. S., Luyssaert, S., Davin, E. L., Janssens, I. & van Lipzig, N. New insights in the capability of climate models to simulate the impact of LUC based on temperature decomposition of paired site observations. J. Geophys. Res. Atmos. 120, 5417–5436 (2015).

    Article  Google Scholar 

  84. Liao, W., Rigden, A. J. & Li, D. Attribution of local temperature response to deforestation. J. Geophys. Res. Biogeosci. 123, 1572–1587 (2018).

    Article  Google Scholar 

  85. George‐Chacón, S. P., Mas, J. F., Dupuy, J. M., Castillo‐Santiago, M. A. & Hernández‐Stefanoni, J. L. Mapping the spatial distribution of stand age and aboveground biomass from Landsat time series analyses of forest cover loss in tropical dry forests. Remote Sens. Ecol. Conserv. 8, 347–361 (2022).

    Article  Google Scholar 

  86. Schultz, N. M., Lawrence, P. J. & Lee, X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. Biogeosci. 122, 903–917 (2017).

    Article  Google Scholar 

  87. Duveiller, G. et al. Revealing the widespread potential of forests to increase low level cloud cover. Nat. Commun. 12, 4337 (2021).

    Article  CAS  Google Scholar 

  88. Duveiller, G. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    Article  Google Scholar 

  89. Meier, R. et al. Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. 14, 473–478 (2021).

    Article  CAS  Google Scholar 

  90. Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

    Article  CAS  Google Scholar 

  91. Sakamoto, Y., Ishiguro, M. & Kitagawa, G. Akaike Information Criterion Statistics (D. Reidel, 1986).

  92. Zhang, M. et al. Response of surface air temperature to small-scale land clearing across latitudes. Environ. Res. Lett. 9, 034002 (2014).

    Article  Google Scholar 

  93. Wang, K. et al. Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. J. Geophys. Res. Atmos. 110, D11109 (2005).

    Article  Google Scholar 

  94. Chen, J. M. Spatial scaling of a remotely sensed surface parameter by contexture. Remote Sens. Environ. 69, 30–42 (1999).

    Article  Google Scholar 

  95. Zhang, C. Code to support ‘Asymmetric influence of forest cover gain and loss on land surface temperature’. Zenodo https://doi.org/10.5281/zenodo.8088598 (2023).

Download references

Acknowledgements

We thank N. Coops from the University of British Columbia and S. Bartalev from the Russian Academy of Sciences for providing the regional tree cover datasets and editing the paper. This study was supported by the National Natural Science Foundation of China (grant nos. 41971275, 31971458 and U21A6001).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and X.C. designed the study and wrote the initial manuscript. Y.S. and C.Z. collected the data and performed the analysis. P.C., Z. Zeng, A.C., J.S., J.M.C., J.L., Y.-P.W., W.Y., S.P., X. Lee, Z. Zhu and Y.L. contributed to discuss the scientific question and revise the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Xiuzhi Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks David Ellison, Shani Rohatyn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–28 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Zhang, C., Ciais, P. et al. Asymmetric influence of forest cover gain and loss on land surface temperature. Nat. Clim. Chang. 13, 823–831 (2023). https://doi.org/10.1038/s41558-023-01757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01757-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing