Abstract
Predicted impacts of climate change on crops—including yield declines and loss of conservation lands—could be mitigated by exploiting existing diversity within crops. Here we examine this possibility for wine grapes. Across 1,100 planted varieties, wine grapes possess tremendous diversity in traits that affect responses to climate, such as phenology and drought tolerance. Yet little of this diversity is exploited. Instead many countries plant 70–90% of total hectares with the same 12 varieties—representing 1% of total diversity. We outline these challenges, and highlight how altered planting practices and new initiatives could help the industry better adapt to continued climate change.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Use of remote sensing-derived fPAR data in a grapevine simulation model for estimating vine biomass accumulation and yield variability at sub-field level
Precision Agriculture Open Access 25 October 2022
-
Historical long-term cultivar×climate suitability data to inform viticultural adaptation to climate change
Scientific Data Open Access 06 June 2022
-
Phenological diversity in wild and hybrid grapes (Vitis) from the USDA-ARS cold-hardy grape collection
Scientific Reports Open Access 21 December 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, Cambridge and New York, 2014).
Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014). Using a suite of global crop models, shows yield declines with future climate change across many models and regions, though uncertainty remains for mid-latitude regions and depending on nutrient availability, CO 2 and high temperature effects.
Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
Nicholas, K. A. & Durham, W. H. Farm-scale adaptation and vulnerability to environmental stresses: Insights from wine-growing in Northern California. Global Environ. Change Human Policy Dimensions 22, 483–494 (2012).
Ollat, N., Touzard, J. M. & van Leeuwen, C. Climate change impacts and adaptations: New challenges for the wine industry. J. Wine Econ. 11, 139–149 (2016).
Himanen, S. J. et al. Cultivar diversity has great potential to increase yield of feed barley. Agronomy Sust. Dev. 33, 519–530 (2013).
Vivier, M. A. & Pretorius, I. S. Genetically tailored grapevines for the wine industry. Trends Biotechnol. 20, 472–478 (2002).
Myles, S. Improving fruit and wine: what does genomics have to offer? Trends Genet. 29, 190–196 (2013).
Collard, B. C. Y. & Mackill, D. J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil. Trans. R. Soc. B 363, 557–572 (2008).
Ignatov, A. & Bodishevskaya, A. Malus 45–64 (Springer-Verlag Berlin, Heidelberg, 2011).
Kahiluoto, H. et al. Cultivating resilience by empirically revealing response diversity. Global Environ. Change Human Policy Dimensions 25, 186–193 (2014).
Lipper, L. et al. Climate-smart agriculture for food security. Nat. Clim. Change 4, 1068–1072 (2014).
Sehgal, D. et al. Exploring and mobilizing the gene bank biodiversity for wheat improvement. Plos One 10, e0132112 (2015).
Gruber, K. Agrobiodiversity the living library. Nature 544, S8–S10 (2017).
Newton, A. C. et al. Cereal landraces for sustainable agriculture. a review. Agronomy Sustain. Dev. 30, 237–269 (2010).
Vikram, P. et al. Unlocking the genetic diversity of creole wheats. Sci. Rep. 6, 23092 (2016).
Castaneda-Alvarez, N. P. et al. Global conservation priorities for crop wild relatives. Nat. Plants 2, 16022 (2016).
Lacombe, T. Contribution à l'étude de l'histoire évolutive de la vigne cultivée (Vitis vinifera L.) par l'analyse de la diversité génétique neutre et de gènes d'intérêt. Doctoral Thesis, Montpellier SupAgro: Centre International d’Etudes Supérieures en Sciences Agronomiques (2012).
Galet, P. Dictionnaire Encyclopédique des Cépages et de leur Synonymes (Édition Libres et Solidaire, Paris, 2015).
Dûchene, E. How can grapevine genetics contribute to the adaptation to climate change? OENO One 50, 113–124 (2016).
Jones, G. V. Climate and terroir: Impacts of climate variability and change on wine. In Geoscience Canada (2003).
Gladstones, J. Wine, Terroir and Climate Change (Wakefield Press, Kent Town, South Australia, 2011).
van Leeuwen, C. et al. Influence of climate, soil, and cultivar on terroir. Am. J. Enology Viticulture 55, 207–217 (2004).
Olmo, H. P. In Evolution of Crop Plants (eds Smartt, J. et al.) 485–490 (Longman, New York, 1995).
Bouquet, A. 1962-2002: 40 ans de progrès en génétique et sélection. Le Sélectionneur Francais 53, 171–182 (2002).
Pelsy, F. Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity 104, 331–340 (2010).
Garnier, E., Daux, V., Yiou, P. & García de Cortázar-Atauri, I. Grapevine harvest dates in Besancon (France) between 1525 and 1847: Social outcomes or climatic evidence? Climatic Change 104, 703–727 (2011).
Dûchene, E., Huard, F., Dumas, V., Schneider, C. & Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 41, 193–204 (2010).
Dry, P. R. & Coombe, B. G. Viticulture Volume 1: Resources 2nd edn (Winetitles, Ashford, South Austalia, 2005).
Dûchene, E., Butterlin, G., Dumas, V. & Merdinoglu, D. Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theoretical Appl. Genet. 124, 623–635 (2012).
Grzeskowiak, L., Costantini, L., Lorenzi, S. & Grando, M. S. Candidate loci for phenology and fruitfulness contributing to the phenotypic variability observed in grapevine. Theoretical Appl. Genet. 126, 2763–2776 (2013).
Jones, G. V. In Phenology: An Integrative Environmental Science (ed. Schwartz, M. D.) 563–584 (Springer, Dordrecht, the Netherlands, 2013). Gives an overview of winegrape phenology, its importance to the wine industry, and trends with climate change.
Boursiquot, J. M., Dessup, M. & Rennes, C. Distribution des principaux caractères phénologiques, agronomiques et technologiques chez Vitis vinifera L. Vitis 34, 31–35 (1995). Reviews the viticultural ‘potential’ of one major research collection of wine grapes by showing the trait diversity of over 2,000 varieties.
Jones, G. V., White, M. A., Cooper, O. R. & Storchmann, K. Climate change and global wine quality. Climatic Change 73, 319–343 (2005).
van Leeuwen, C. & Destrac-Irvine, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One 51, 147–154 (2017). Gives an overview of major changes in winegrape production already seen with climate change, including shifted phenology, lower acidity and higher alcohol content.
Jones, G. V. In Grapevine in a Changing Environment: A Molecular and Ecophysiological Perspective (eds Geros, H. et al.) 1–17 (Wiley-Blackwell, 2015).
van Leeuwen, C. et al. Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc. Natl Acad. Sci. USA 110, E3051–2 (2013).
Vitis international variety catalogue (VIVC, accessed on 18 June 2017); http://www.vivc.de/
Jullien, A. Topograhie de Tous les Vignobles Connus (Librarie d’Agriculture et d’Horticulture, Paris, 1866).
Annual Report of the Board of State Viticultural Commissioners: 1880 Report (California Board of State Viticultural Commissioners, 1881).
Kerridge, G. H. & Antcliff, A. J. Wine grape varieties (CSIRO, Merbein, Victoria, 1999).
Goussard, P. Grape Cultivars for Wine Production in South Africa (Cheviot publishing, Green Point, South Africa, 2008).
Tapia, A. M. et al. Determining the Spanish origin of representative ancient American grapevine varieties. Am. J. Enology Viticulture 58, 242–251 (2007).
Coombe, B. G. & Dry, P. R. Viticulture Volume 1: Resources 1st edn (Winetitles, Ashford, South Austalia, 1988).
Robinson, J. & Harding, J. The Oxford Companion to Wine 4th edn (Oxford Univ. Press, New York, 2015).
Anderson, K. & Aryal, N. R. Which Winegrape Varieties are Grown Where? A Global Empirical Picture (University of Adelaide Press, Adelaide, 2013). Presents compiled data on which winegrape varieties are grown where for regions in 44 countries.
Arias, P., Dankers, C., Pascal, L. & Pilkauskas, P. The World Banana Economy: 1985–2002 (Food and agriculture organization of the United Nations, Rome, 2003).
Wu, G. A. et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat. Biotech. 32, 656–662 (2014).
Pinney, T. History of Wine in America, Volume 2: From Prohibition to the Present (University of California Press, Los Angeles, 2005).
Robinson, J. Tasting Pleasure: Confessions of a Wine Lover (Penguin, New York, 1999).
Bota, J., Tomas, M., Flexas, J., Medrano, H. & Escalona, J. M. Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress. Agricultural Water Management 164, 91–99 (2016).
Webb, L. B., Whetton, P. & Barlow, E. W. R. Modelled impact of future climate change on the phenology of wine grapes in australia. Aus. J. Grape Wine Res. 13, 165–175 (2007).
Hannah, L. et al. Climate change, wine, and conservation. Proc. Natl Acad. Sci. USA 110, 6907–6912 (2013).
Fraga, H., García de Cortázar-Atauri, I., Malheiro, A. C. & Santos, J. A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biol. 22, 3774–3788 (2016).
Parker, A. K., García de Cortázar-Atauri, I., van Leeuwen, C. & Chuine I. General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aus. J. Grape Wine Res. 17, 206–216 (2011).
Parker, A. et al. Classification of varieties for their timing of flowering and veraison using a modelling approach: A case study for the grapevine species Vitis vinifera L. Agricult. Forest Meteorol. 180, 249–264 (2013).
Maul, E. et al. Identification and characterization of grapevine genetic resources maintained in Eastern European Collections. Vitis 54, 5–12 (2015).
van Kleunen, M. & Fischer, M. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol. 166, 49–60 (2005).
Aspinwall, M. J. et al. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change. Plant Cell Environ. 38, 1752–1764 (2015).
Sadras, V. O., Reynolds, M. P., de la Vega, A. J., Petrie, P. R. & Robinson, R. Phenotypic plasticity of yield and phenology in wheat, sunflower and grapevine. Field Crops Res. 110, 242–250 (2009).
OIV Descriptor List for Grape Varieties and Vitis Species 2nd edn (Organisation Internationale de la Vigne et du Vin, Paris, 2009).
Crop Ontology for Agriculture Data (Crop Ontology Curation Tool, accessed 18 June 2017); http://www.cropontology.org/ontology/VITIS/Vitis
Quénol, H. et al. Méthodes d'analyse et de modélisation agro climatique et de changement climatique à l'échelle des terroirs viticoles 39–89 (Lavoisier, Paris, 2014).
Battany, M. Paso Robles Irrigation Monitoring Project. University of California Cooperative Extension: Grape Notes 1–5 (2015).
Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).
Sanchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and development of maize and rice: a review. Glob. Change Biol. 20, 408–417 (2014).
Menzel, A., Helm, R. & Zang, C. Patterns of late spring frost leaf damage and recovery in a European beech (Fagus sylvatica L.) stand in south-eastern Germany based on repeated digital photographs. Front. Plant Sci. 6, 110 (2015).
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. et al.) (Cambridge Univ. Press, 2013).
Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dynam. 43, 2607–2627 (2014).
Francis, J. A. & Vavrus, S. J. Evidence linking arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. https://dx.doi.org/10.1029/2012GL051000 (2012).
Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576 (2014).
Du, F. et al. Protecting grapevines from rainfall in rainy conditions reduces disease severity and enhances profitability. Crop Protection 67, 261–268 (2015).
Coombe, B. G. & Dry, P. R. Viticulture, Volume 2: Practices (Winetitles, Adelaide, South Australia, 1992).
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).
Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848 (2010).
Parent, B. & Tardieu, F. Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytol. 194, 760–774 (2012). Shows less variation in the temperature responses of lines of three crops (maize, rice and wheat) compared with wild species, suggesting that centuries of crop breeding produce muted change compared to millennia of evolution unassisted by humans.
Acknowledgements
Many thanks to C. Marchal and S. Dedet, who helped with data from INRA Domaine de Vassal Grape Collection (France), S. Schaffer-Morrison who helped build the dataset of geolocations of the world’s wine-growing regions, E. Forrestel who helped format the crush report data from California, and to T. J. Davies, whose comments improved the manuscript.
Author information
Ethics declarations
Competing financial interests
The authors declare no competing financial interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Materials
Supplementary discussion, Data and methods, Supplementary Figures 1–6, Supplementary References.
Rights and permissions
About this article
Cite this article
Wolkovich, E.M., García de Cortázar-Atauri, I., Morales-Castilla, I. et al. From Pinot to Xinomavro in the world's future wine-growing regions. Nature Clim Change 8, 29–37 (2018). https://doi.org/10.1038/s41558-017-0016-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41558-017-0016-6
This article is cited by
-
Use of remote sensing-derived fPAR data in a grapevine simulation model for estimating vine biomass accumulation and yield variability at sub-field level
Precision Agriculture (2023)
-
Historical long-term cultivar×climate suitability data to inform viticultural adaptation to climate change
Scientific Data (2022)
-
Effects of climate change on bioclimatic indices in vineyards along Lake Neuchatel, Switzerland
Theoretical and Applied Climatology (2022)
-
Phenological diversity in wild and hybrid grapes (Vitis) from the USDA-ARS cold-hardy grape collection
Scientific Reports (2021)
-
Projected effects of climate change on Tempranillo and Chardonnay varieties in La Mancha Designation of Origin
Agronomy for Sustainable Development (2021)