Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early human selection of crops’ wild progenitors explains the acquisitive physiology of modern cultivars

Abstract

Crops have resource-acquisitive leaf traits, which are usually attributed to the process of domestication. However, early choices of wild plants amenable for domestication may also have played a key role in the evolution of crops’ physiological traits. Here we compiled data on 1,034 annual herbs to place the ecophysiological traits of 69 crops’ wild progenitors in the context of global botanical variation, and we conducted a common-garden experiment to measure the effects of domestication on crop ecophysiology. Our study found that crops’ wild progenitors already had high leaf nitrogen, photosynthesis, conductance and transpiration and soft leaves. After domestication, ecophysiological traits varied little and in idiosyncratic ways. Crops did not surpass the trait boundaries of wild species. Overall, the resource-acquisitive strategy of crops is largely due to the inheritance from their wild progenitors rather than to further breeding improvements. Our study concurs with recent literature highlighting constraints of crop breeding for faster ecophysiological traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual framework.
Fig. 2: Early human selection.
Fig. 3: Evolution under cultivation.
Fig. 4: Domesticates versus wilds.

Similar content being viewed by others

Data availability

Most of the data used to compile the global dataset are publicly available in plant databases (the TRY plant trait database (www.try-db.org), the Botanical Information and Ecology Network database (https://bien.nceas.ucsb.edu/bien/), the AusTraits database (www.austraits.org), the China Plant Trait database (https://doi.org/10.1038/s41597-022-01884-4), the LEDA traitbase (www.leda-traitbase.org), the Plants of the World Online database (www.plantsoftheworldonline.org), and Crop Origins database (https://github.com/rubenmilla/Crop_Origins_Phylo/) and in published literature (Supplementary Table 1). The raw data of the experimental dataset and compiled species-level data on woodiness, growth form, life cycle and photosynthetic pathway are openly available at https://doi.org/10.6084/m9.figshare.24312577.v2 (ref. 106).

Code availability

The analyses carried out in this paper did not require the development of custom code. Functions were run as provided by the R packages mentioned in Methods.

References

  1. Qian, H., Zhang, J. & Zhao, J. How many known vascular plant species are there in the world? An integration of multiple global plant databases. Biodivers. Sci. 30, 22254 (2022).

    Article  Google Scholar 

  2. Milla, R. & Osborne, C. P. Crop origins explain variation in global agricultural relevance. Nat. Plants 7, 598–607 (2021).

    Article  PubMed  Google Scholar 

  3. Gepts, P. in Our Fragile World: Challenges and Opportunities for Sustainable Development Vol. 1 (ed. Tolba, M. K.) 629–637 (EOLSS, 2001).

  4. Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet 14, 840–852 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Evans, L. T. Crop Evolution, Adaptation and Yield (Cambridge Univ. Press, 1993).

  6. Gómez‐Fernández, A. et al. Disparities among crop species in the evolution of growth rates: the role of distinct origins and domestication histories. N. Phytol. 233, 995–1010 (2022).

    Article  Google Scholar 

  7. Nadal, M. & Flexas, J. Variation in photosynthetic characteristics with growth form in a water-limited scenario: implications for assimilation rates and water use efficiency in crops. Agric. Water Manage. 216, 457–472 (2018).

    Article  Google Scholar 

  8. Huang, G., Peng, S. & Li, Y. Variation of photosynthesis during plant evolution and domestication: implications for improving crop photosynthesis. J. Exp. Bot. 73, 4886–4896 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. de Wet, J. M. J. & Harlan, J. R. Weeds and domesticates: evolution in the man-made habitat. Econ. Bot. 29, 99–107 (1975).

    Article  Google Scholar 

  10. Cunniff, J. et al. Functional traits differ between cereal crop progenitors and other wild grasses gathered in the neolithic Fertile Crescent. PLoS ONE 9, e87586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Preece, C. et al. Were Fertile Crescent crop progenitors higher yielding than other wild species that were never domesticated? N. Phytol. 207, 905–913 (2015).

    Article  Google Scholar 

  12. Spengler, R. N. Insularity and early domestication: anthropogenic ecosystems as habitat islands. Oikos 2022, e09549 (2022).

    Article  Google Scholar 

  13. Lambers, H. & Oliveira, R. S. in Plant Physiological Ecology (eds Lambers, H. et al.) 299–351 (Springer, 2007).

  14. Gago, J. et al. Opportunities for improving leaf water use efficiency under climate change conditions. Plant Sci. 226, 108–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Milla, R., Osborne, C. P., Turcotte, M. M. & Violle, C. Plant domestication through an ecological lens. Trends Ecol. Evol. 30, 463–469 (2015).

    Article  PubMed  Google Scholar 

  16. Milla, R. et al. Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nat. Ecol. Evol. 2, 1808–1817 (2018).

    Article  PubMed  Google Scholar 

  17. Martín-Robles, N. et al. Root traits of herbaceous crops: pre-adaptation to cultivation or evolution under domestication? Funct. Ecol. 33, 273–285 (2018).

    Article  Google Scholar 

  18. Tribouillois, H. et al. A functional characterisation of a wide range of cover crop species: growth and nitrogen acquisition rates, leaf traits and ecological strategies. PLoS ONE 10, e0122156 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Weiss, E., Kislev, M. E. & Hartmann, A. Autonomous cultivation before domestication. Science 312, 1608–1610 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Kislev, M. E., Weiss, E. & Hartmann, A. Impetus for sowing and the beginning of agriculture: ground collecting of wild cereals. Proc. Natl Acad. Sci. USA 101, 2692–2695 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wood, D. & Lenné, J. M. A natural adaptive syndrome as a model for the origins of cereal agriculture. Proc. R. Soc. B 285, 20180277 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Blumler, M. A. in The Origins of Agriculture and Crop Domestication (eds Damania, A. B. et al.) 252–268 (International Center for Agricultural Research in the Dry Areas, 1998).

  23. Roucou, A. et al. Shifts in plant functional strategies over the course of wheat domestication. J. Appl. Ecol. 55, 25–37 (2017).

    Article  Google Scholar 

  24. Martin, A. R. & Isaac, M. E. Functional traits in agroecology: advancing description and prediction in agroecosystems. J. Appl. Ecol. 55, 5–11 (2018).

    Article  Google Scholar 

  25. Hay, R. K. M. & Porter, J. R. The Physiology of Crop Yield (Blackwell, 2006).

  26. Preece, C. et al. How did the domestication of Fertile Crescent grain crops increase their yields? Funct. Ecol. 31, 387–397 (2017).

    Article  PubMed  Google Scholar 

  27. González, A., Lynch, J., Tohme, J. M., Beebe, S. E. & Macchiavelli, R. E. Characters related to leaf photosynthesis in wild populations and landraces of common bean. Crop Sci. 35, 1468–1476 (1995).

    Article  Google Scholar 

  28. Evans, L. T. & Dunstone, R. L. Some physiological aspects of evolution in wheat. Aust. J. Biol. Sci. 23, 725–742 (1970).

    Article  Google Scholar 

  29. Pujol, B., Salager, J. L., Beltran, M., Bousquet, S. & McKey, D. Photosynthesis and leaf structure in domesticated cassava (Euphorbiaceae) and a close wild relative: have leaf photosynthetic parameters evolved under domestication? Biotropica 40, 305–312 (2008).

    Article  Google Scholar 

  30. Lei, Z. et al. Comparisons of photosynthetic and anatomical traits between wild and domesticated cotton. J. Exp. Bot. 73, 873–885 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Xiong, D. et al. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. J. Exp. Bot. 66, 741–748 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Giuliani, R. et al. Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (genus Oryza). Plant Physiol. 162, 1632–1651 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matesanz, S. & Milla, R. Differential plasticity to water and nutrients between crops and their wild progenitors. Environ. Exp. Bot. 145, 54–63 (2018).

    Article  CAS  Google Scholar 

  34. Yarkhunova, Y. et al. Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa. N. Phytol. 210, 133–144 (2016).

    Article  CAS  Google Scholar 

  35. Bazzaz, F. A. The physiological ecology of plant succession. Annu. Rev. Ecol. Syst. 10, 351–371 (1979).

    Article  Google Scholar 

  36. Pearcy, R. W. & Ehleringer, J. Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ. 7, 1–13 (1984).

    Article  CAS  Google Scholar 

  37. Gago, J. et al. Photosynthesis optimized across land plant phylogeny. Trends Plant Sci. 24, 947–958 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Abbo, S. et al. Reconsidering domestication of legumes versus cereals in the ancient Near East. Q. Rev. Biol. 84, 29–50 (2009).

    Article  PubMed  Google Scholar 

  39. Gifford, R. M. & Evans, L. T. Photosynthesis, carbon partitioning, and yield. Annu. Rev. Plant Physiol. 32, 485–509 (1981).

    Article  CAS  Google Scholar 

  40. Engelbrecht, T. H. Über die Entstehung einiger feldmäßig angebauter Kulturpflanzen. Geogr. Z. 22, 328–334 (1916).

    Google Scholar 

  41. Hawkes, J. G. in The Domestication and Exploitation of Plants and Animals (eds Ucko, P. J. & Dimbleby, G. W.) 17–29 (Gerald Duckworth & Co. Ltd., 1969).

  42. Grime, J. P. Primary strategies in plants. Trans. Bot. Soc. Edinb. 43, 151–160 (1979).

    Article  Google Scholar 

  43. Preece, C. et al. Cereal progenitors differ in stand harvest characteristics from related wild grasses. J. Ecol. 106, 1286–1297 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Preece, C., Jones, G., Rees, M. & Osborne, C. P. Fertile Crescent crop progenitors gained a competitive advantage from large seedlings. Ecol. Evol. 11, 3300–3312 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Willcox, G. The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: multiple events, multiple centres. Veg. Hist. Archaeobot. 14, 534–541 (2005).

    Article  Google Scholar 

  47. Zohary, D., Hopf, M. & Weiss, E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin (Oxford Univ. Press, 2012).

  48. Kooyers, N. J. The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci. 234, 155–162 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Blanco‐Sánchez, M. et al. Natural selection favours drought escape and an acquisitive resource‐use strategy in semi‐arid Mediterranean shrubs. Funct. Ecol. 36, 2289–2302 (2022).

    Article  Google Scholar 

  50. Hanley, M. E., Lamont, B. B., Fairbanks, M. M. & Rafferty, C. M. Plant structural traits and their role in anti-herbivore defence. Perspect. Plant Ecol. Evol. Syst. 8, 157–178 (2007).

    Article  Google Scholar 

  51. Bekaert, M., Edger, P. P., Hudson, C. M., Pires, J. C. & Conant, G. C. Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis. N. Phytol. 196, 596–605 (2012).

    Article  CAS  Google Scholar 

  52. Zangerl, A. R., Arntz, A. M. & Berenbaum, M. R. Physiological price of an induced chemical defense: photosynthesis, respiration, biosynthesis, and growth. Oecologia 109, 433–441 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Moles, A. T. et al. Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat? N. Phytol. 198, 252–263 (2013).

    Article  Google Scholar 

  54. Barton, K. E. & Boege, K. Future directions in the ontogeny of plant defence: understanding the evolutionary causes and consequences. Ecol. Lett. 20, 403–411 (2017).

    Article  PubMed  Google Scholar 

  55. Fernandez, A. R., Sáez, A., Quintero, C., Gleiser, G. & Aizen, M. A. Intentional and unintentional selection during plant domestication: herbivore damage, plant defensive traits and nutritional quality of fruit and seed crops. N. Phytol. 231, 1586–1598 (2021).

    Article  Google Scholar 

  56. Chapuis, M. et al. Domestication provides durum wheat with protection from locust herbivory. Ecol. Evol. 13, e9741 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Garibaldi, L. A. et al. The influences of progenitor filtering, domestication selection and the boundaries of nature on the domestication of grain crops. Funct. Ecol. 35, 1998–2011 (2021).

    Article  Google Scholar 

  58. Kerem, Z., Lev-Yadun, S., Gopher, A., Weinberg, P. & Abbo, S. Chickpea domestication in the Neolithic Levant through the nutritional perspective. J. Archaeol. Sci. 34, 1289–1293 (2007).

    Article  Google Scholar 

  59. Milla, R., Morente-López, J., Alonso-Rodrigo, J. M., Martín-Robles, N. & Stuart Chapin, F. Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops. Proc. R. Soc. B 281, 20141429 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Milla, R. & Matesanz, S. Growing larger with domestication: a matter of physiology, morphology or allocation? Plant Biol. 19, 475–483 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Niklas, K. J. et al. ‘Diminishing returns’ in the scaling of functional leaf traits across and within species groups. Proc. R. Soc. B 104, 8891–8896 (2007).

    CAS  Google Scholar 

  62. Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. N. Phytol. 193, 30–50 (2012).

    Article  CAS  Google Scholar 

  63. Flexas, J. & Carriquí, M. Photosynthesis and photosynthetic efficiencies along the terrestrial plant’s phylogeny: lessons for improving crop photosynthesis. Plant J. 101, 964–978 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Flexas, J. et al. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 39, 965–982 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Mott, K. A., Gibson, A. C. & O’Leary, J. W. The adaptive significance of amphistomatic leaves. Plant Cell Environ. 5, 455–460 (1982).

    Article  Google Scholar 

  66. Milla, R. Phenotypic evolution of agricultural crops. Funct. Ecol. 37, 976–988 (2023).

    Article  CAS  Google Scholar 

  67. Lin, B. B., Flynn, D. F. B., Bunker, D. E., Uriarte, M. & Naeem, S. The effect of agricultural diversity and crop choice on functional capacity change in grassland conversions. J. Appl. Ecol. 48, 609–618 (2011).

    Article  Google Scholar 

  68. Martin, A. R. et al. Inter- and intraspecific variation in leaf economic traits in wheat and maize. AoB Plants 10, ply006 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Glémin, S. & Bataillon, T. A comparative view of the evolution of grasses under domestication. N. Phytol. 183, 273–290 (2009).

    Article  Google Scholar 

  70. Hyten, D. L. et al. Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl Acad. Sci. USA 103, 16666–16671 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Rotundo, J. L. & Cipriotti, P. A. Biological limits on nitrogen use for plant photosynthesis: a quantitative revision comparing cultivated and wild species. N. Phytol. 214, 120–131 (2017).

    Article  CAS  Google Scholar 

  73. Donovan, L. A., Mason, C. M., Bowsher, A. W., Goolsby, E. W. & Ishibashi, C. D. A. Ecological and evolutionary lability of plant traits affecting carbon and nutrient cycling. J. Ecol. 102, 302–314 (2014).

    Article  Google Scholar 

  74. Christin, P. & Osborne, C. P. The evolutionary ecology of C4 plants. N. Phytol. 204, 765–781 (2014).

    Article  CAS  Google Scholar 

  75. Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Article  Google Scholar 

  76. Maitner, B. S. et al. The BIEN R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).

    Article  Google Scholar 

  77. Falster, D. et al. AusTraits, a curated plant trait database for the Australian flora. Sci. Data 8, 254 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wang, H. et al. The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99, 500 (2018).

    Article  PubMed  Google Scholar 

  79. Kleyer, M. et al. The LEDA Traitbase: a database of life‐history traits of the northwest European flora. J. Ecol. 96, 1266–1274 (2008).

    Article  Google Scholar 

  80. Neto-Bradley, B. M., Whitton, J., Lipsen, L. P. J. & Pennell, M. W. Macroevolutionary history predicts flowering time but not phenological sensitivity to temperature in grasses. Am. J. Bot. 108, 893–902 (2021).

    Article  PubMed  Google Scholar 

  81. Delgado-Baquerizo, M., Reich, P. B., García-Palacios, P. & Milla, R. Biogeographic bases for a shift in crop C:N:P stoichiometries during domestication. Ecol. Lett. 19, 564–575 (2016).

    Article  PubMed  Google Scholar 

  82. Jiménez-Leyva, A. et al. Functional plasticity of Capsicum annuum var. glabriusculum through multiple traits. AoB Plants 14, plac017 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Simpson, K. J. et al. Large seeds provide an intrinsic growth advantage that depends on leaf traits and root allocation. Funct. Ecol. 35, 2168–2178 (2021).

    Article  CAS  Google Scholar 

  84. Hanba, Y. T., Kobayashi, T. & Enomoto, T. Variations in the foliar δ13C and C3/C4 species richness in the Japanese flora of Poaceae among climates and habitat types under human activity. Ecol. Res. 25, 213–224 (2010).

    Article  Google Scholar 

  85. Marques, E. et al. The impact of domestication on aboveground and belowground trait responses to nitrogen fertilization in wild and cultivated genotypes of chickpea (Cicer sp.). Front. Genet. 11, 576338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Milla, R. Crop Origins and Phylo Food: a database and a phylogenetic tree to stimulate comparative analyses on the origins of food crops. Glob. Ecol. Biogeogr. 29, 606–614 (2020).

    Article  Google Scholar 

  87. Meyer, R. S., DuVal, A. E. & Jensen, H. R. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. N. Phytol. 196, 29–48 (2012).

    Article  Google Scholar 

  88. Osborne, C. P. et al. A global database of C4 photosynthesis in grasses. N. Phytol. 204, 441–446 (2014).

    Article  CAS  Google Scholar 

  89. Simpson, K. J. et al. C4 photosynthesis and the economic spectra of leaf and root traits independently influence growth rates in grasses. J. Ecol. 108, 1899–1909 (2020).

    Article  CAS  Google Scholar 

  90. Freiberg, M. et al. LCVP, the Leipzig Catalogue of Vascular Plants, a new taxonomic reference list for all known vascular plants. Sci. Data 7, 416 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Poorter, H., Bühler, J., van Dusschoten, D., Climent, J. & Postma, J. A. Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Funct. Plant Biol. 39, 839–850 (2012).

    Article  PubMed  Google Scholar 

  92. R Core Team R: A Language and Environment for Statistical Computing v.4.2.0 (R Foundation for Statistical Computing, 2022); https://www.r-project.org/

  93. Symonds, M. R. & Blomberg, S. P. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 105–130 (Springer, 2014).

  94. Jin, Y. & Qian, H. V. PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335–339 (2022).

  95. Qian, H. & Jin, Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. 43, 255–263 (2021).

    Article  PubMed  Google Scholar 

  96. Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).

    Article  Google Scholar 

  97. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and nonlinear mixed effects models. R package version 3.1-157 (2022).

  98. Barton, K. Mu-MIn: Multi-model inference. R package version 1.46.0 (2022).

  99. Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R package version 0.7.0 (2021).

  100. Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).

    Article  Google Scholar 

  101. Blonder, B. et al. New approaches for delineating n-dimensional hypervolumes. Methods Ecol. Evol. 9, 305–319 (2018).

    Article  Google Scholar 

  102. Blonder, B. Do hypervolumes have holes? Am. Nat. 187, E93–E105 (2016).

    Article  PubMed  Google Scholar 

  103. Lamanna, C. et al. Functional trait space and the latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 111, 13745–13750 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article  Google Scholar 

  105. Blonder, B. et al. hypervolume: High dimensional geometry, set operations, projection, and inference using kernel density estimation, support vector machines, and convex hulls. R package version 3.1.0 (2022).

  106. Gómez-Fernández, A., Milla, R. & Aranda, I. Early human selection of crops’ wild progenitors explains the acquisitive physiology of modern cultivars. Data sets. Figshare https://doi.org/10.6084/m9.figshare.24312577.v2 (2023).

Download references

Acknowledgements

We thank A. Fernández for her help with plant sampling, M. Ramos and M. Blanco-Sánchez for their assistance with stable isotope analyses, and P. A. Martínez and M. S. Przybylska for statistical advice on phylogenetic and hypervolume analyses, respectively. This research was funded by an AEET Young Researchers grant to A.G.-F., by projects nos. CGL2017-83855-R and PID2021-122296NB-I00 (MINECO, Spain) to R.M. and by project no. REMEDINAL3-CM/S2013/MAE-2719 to I.A. A.G.-F. was supported by CAM (no. PEJD-2017-PRE/AMB-3598) and URJC (no. PREDOC20-030-1545) predoctoral fellowships and an Erasmus+ short mobility grant.

Author information

Authors and Affiliations

Authors

Contributions

A.G.-F. compiled and analysed the data, interpreted the results and prepared the draft paper. All authors contributed to the study conception and design, collected the experimental data, and reviewed and approved the final version of the paper.

Corresponding authors

Correspondence to Alicia Gómez-Fernández or Rubén Milla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Jaume Flexas, Eric von Wettberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Univariate comparisons between domesticates and wild species that were never domesticated in the ecophysiological traits.

Domesticates (D) are shown in orange and wild annual herbs (W) in green. Symbols indicate photosynthetic pathway: C3 (circles) versus C4 (triangles). Points are trait mean of species grouped by botanical order. Statistical differences were evaluated from phylogenetic generalized least squares (PGLS) models across 1000 randomly resolved trees and asterisks denote the mean P value based on analysis of variance (ANOVA) tests (., P < 0.1; *, P < 0.05; **, P < 0.01; ***, P < 0.001). Total sample size is shown for each trait, plant type (D, W) and photosynthetic pathway. Abbreviations: Aarea, net photosynthetic rate per unit area; gwv, stomatal conductance to water vapour; [Nmass], mass-based leaf N concentration; SLA, specific leaf area; and δ13C, 13C isotopic composition.

Extended Data Fig. 2 Trait correlations.

Correlations among log10-transformed ecophysiological traits plotted separately for photosynthetic pathway (C3, C4). Solid lines represent the fitted phylogenetic generalised least squares (PGLS) model and were drawn when trait correlation was significant (P < 0.05). PGLSs included one ecophysiological trait as response variable and the interaction between another ecophysiological trait and photosynthetic pathway as fixed effects. Abbreviations: Aarea, net photosynthetic rate per unit area; gwv, stomatal conductance to water vapour; [Nmass], mass-based leaf N concentration; SLA, specific leaf area; and δ13C, 13C isotopic composition.

Extended Data Fig. 3 Organ under selection.

Ecophysiological traits between the different types of crops’ wild progenitors depending on the organ under selection (either fruit/flower, leaf/shoot, or seed). Wild species that were never domesticated were included in the plot (*None). Dots are trait mean of species. Boxplots show the median and 25th and 75th percentiles of the data, with whiskers extending to 1.5 times the interquartile range. Models were tested with phylogenetic generalized least squares (PGLS). Different letters indicate significant differences among types of crops’ wild progenitors at P < 0.05, after multiple comparisons tests with false-discovery rate correction. Abbreviations: Aarea, net photosynthetic rate per unit area; gwv, stomatal conductance to water vapour; [Nmass], mass-based leaf N concentration; SLA, specific leaf area; and δ13C, 13C isotopic composition. For SLA, one wild progenitor selected for its roots was removed from the multiple comparisons tests because there was no other data belonging to this category.

Extended Data Fig. 4 Effect sizes of domestication and improvement.

Effect sizes of domestication (landrace-progenitor comparisons) and improvement (improved-landrace comparisons) on the five studied ecophysiological traits: net photosynthetic rate per unit area (a), stomatal conductance to water vapour (b), mass-based leaf N concentration (c), specific leaf area (d), and 13C isotopic composition (e), for each crop included in the experimental dataset. The dots are the effect sizes estimated by Hedges´G and the bars are the 95% confidence intervals. Hedges’ G was computed as the difference in means between landraces and wild progenitors (domestication effect size; n = 16 for each crop) or improved cultivars and landraces (improvement effect size; n = 16 for each crop) divided by the pooled and weighted standard deviation of the two groups. Negative scores of Hedges’ G indicate negative effects of domestication or improvement on the ecophysiological traits.

Extended Data Fig. 5 Results of principal components analysis for mass-based leaf N concentration ([Nmass]) and 13C isotopic composition (δ13C).

Ellipses represent 95% confidence areas for domesticates (orange) and wild species (green). Centroids are represented by the largest point of the same colour, while the smaller points represent individual species. Axes percentages represent the amount of variation accounted for by each principal component.

Extended Data Table 1 Range of variation in leaf ecophysiological traits and summary of data compilation
Extended Data Table 2 Results of phylogenetic generalised least squares models (PGLSs) examining the effects of early selection on ecophysiological traits for (a) the global dataset and for (b) indoor experiments
Extended Data Table 3 Results of phylogenetic generalised least squares models (PGLSs) examining the effects of early selection on ecophysiological traits for (a) cereals, (b) legumes, and (c) forbs
Extended Data Table 4 Results of linear mixed-effects models (LMMs) testing the effects of domestication and improvement on ecophysiological traits
Extended Data Table 5 Results of hypervolume analyses

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Fernández, A., Aranda, I. & Milla, R. Early human selection of crops’ wild progenitors explains the acquisitive physiology of modern cultivars. Nat. Plants 10, 25–36 (2024). https://doi.org/10.1038/s41477-023-01588-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01588-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing