Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A general alkene aminoarylation enabled by N-centred radical reactivity of sulfinamides

Abstract

Arylethylamines are popular structural elements in bioactive molecules but are often made through a linear series of synthetic steps. A modular protocol to assemble arylethylamines from alkenes in one step would represent a useful advance in discovery chemistry, though current limitations preclude a generally applicable method. In this work we disclose an aminoarylation of alkenes using aryl sulfinamide reagents as bifunctional amine and arene donors. This reaction features excellent regioselectivity and diastereoselectivity on a variety of activated and unactivated substrates. Using a weakly oxidizing photocatalyst, a nitrogen radical is generated under mild conditions and adds to an alkene to form a new C–N bond. A desulfinylative aryl migration event known as a Smiles–Truce rearrangement follows to form a new C–C bond. In this manner, arylethylamines can be rapidly assembled from abundant alkene feedstocks. Moreover, chiral information from the sulfinamide can be transferred via rearrangement to a new carbon stereocentre in the product, thus advancing the development of traceless asymmetric alkene difunctionalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alkene aminoarylation to synthesize biologically active molecules.
Fig. 2: Considerations informing reaction design and depiction of first success.
Fig. 3: Proposed mechanism and key experiments.
Fig. 4: Examples of synthetic utility and stereocontrol.

Similar content being viewed by others

Data availability

All data in support of the findings of this study are available within the Article and its Supplementary Information. X-ray crystallographic data for compound 2u are freely available from the Cambridge Crystallographic Data Center (CCDC 2150974).

References

  1. Mieda, R. et al. Comparison of four documents describing adrenaline purification, and the work of three important scientists, Keizo Uenaka, Nagai Nagayoshi and Jokichi Takamine. J. Anesth. Hist. 6, 42–48 (2020).

    Article  PubMed  Google Scholar 

  2. Gainetdinov, R. R., Hoener, M. C. & Berry, M. D. Trace amines and their receptors. Pharmacol. Rev. 70, 549–620 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Sherwani, S. I. & Khan, H. A. in Trace Amines and Neurological Disorders (eds Farooqui, T. & Farooqui, A. A.) 269–284 (Academic Press, 2016).

  4. Wu, R., Liu, J. & Li, J.-X. in Advances in Pharmacology Vol. 93 (ed. Li, J.-X.) 373–401 (Academic Press, 2022).

  5. Grace, A. A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 17, 524–532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hollopeter, G. et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409, 202–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Jones, P., Wilcoxen, K., Rowley, M. & Toniatti, C. Niraparib: a poly(ADP-ribose) polymerase (PARP) inhibitor for the treatment of tumors with defective homologous recombination. J. Med. Chem. 58, 3302–3314 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Ryu, J.-S., Li, G. Y. & Marks, T. J. Organolathanide-catalyzed regioselective intermolecular hydroamination of alkenes, alkynes, vinylarenes, di- and trivinylarenes, and methylenecyclopropanes. Scope and mechanistic comparison to intramolecular cyclohydroaminations. J. Am. Chem. Soc. 125, 12584–12605 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Utsunomiya, M. & Hartwig, J. F. Ruthenium-catalyzed anti-Markovnikov hydroamination of vinylarenes. J. Am. Chem. Soc. 126, 2702–2703 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Nielsen, D. K., Huang, C.-Y. & Doyle, A. G. Directed nickel-catalyzed Negishi cross coupling of alkyl aziridines. J. Am. Chem. Soc. 135, 13605–13609 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Duda, M. L. & Michael, F. E. Palladium-catalyzed cross-coupling of N-sulfonylaziridines with boronic acids. J. Am. Chem. Soc. 135, 18347–18349 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Steiman, T. J., Liu, J., Mengiste, A. & Doyle, A. G. Synthesis of β-phenethylamines via Ni/photoredox cross-electrophile coupling of aliphatic aziridines and aryl iodides. J. Am. Chem. Soc. 142, 7598–7605 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lippa, R. A., Battersby, D. J., Murphy, J. A. & Barrett, T. N. Synthesis of arylethylamines via C(sp3)–C(sp3) palladium-catalyzed cross-coupling. J. Org. Chem. 86, 3583–3604 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Boyington, A. J., Seath, C. P., Zearfoss, A. M., Xu, Z. & Jui, N. T. Catalytic strategy for regioselective arylethylamine synthesis. J. Am. Chem. Soc. 141, 4147–4153 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, D. et al. Asymmetric copper-catalyzed intermolecular aminoarylation of styrenes: efficient access to optical 2,2-diarylethylamines. J. Am. Chem. Soc. 139, 6811–6814 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, H., Yu, X., Daniliuc, C. G. & Studer, A. Three-component aminoarylation of electron-rich alkenes by merging photoredox with nickel catalysis. Angew. Chem. Int. Ed. 60, 14399–14404 (2021).

    Article  CAS  Google Scholar 

  17. Margrey, K. A. & Nicewicz, D. A. A general approach to catalytic alkene anti-Markovnikov hydrofunctionalization reactions via acridinium photoredox catalysis. Acc. Chem. Res. 49, 1997–2006 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Kang, T. et al. Nickel-catalyzed 1,2-carboamination of alkenyl alcohols. J. Am. Chem. Soc. 143, 13962–13970 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Z. et al. Catalytic intermolecular carboamination of unactivated alkenes via directed aminopalladation. J. Am. Chem. Soc. 139, 11261–11270 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Kang, T. et al. Alkene difunctionalization directed by free amines: diamine synthesis via nickel-catalyzed 1,2-carboamination. ACS Catal. 12, 3890–3896 (2022).

    Article  CAS  Google Scholar 

  21. Zeng, W. & Chemler, S. R. Copper(II)-catalyzed enantioselective intramolecular carboamination of alkenes. J. Am. Chem. Soc. 129, 12948–12949 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wolfe, J. P. Palladium-catalyzed carboetherification and carboamination reactions of γ-hydroxy- and γ-aminoalkenes for the synthesis of tetrahydrofurans and pyrrolidines. Eur. J. Org. Chem. 2007, 571–582 (2007).

    Article  Google Scholar 

  23. Zheng, S., Gutierrez-Bonet, A. & Molander, G. A. Merging photoredox PCET with nickel-catalyzed cross-coupling: cascade amidoarylation of unactivated olefins. Chem 5, 339–352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Angelini, L. et al. Reaction of nitrogen-radicals with organometallics under Ni-catalysis: N-arylations and amino-functionalization cascades. Angew. Chem. Int. Ed. 58, 5003–5007 (2019).

    Article  CAS  Google Scholar 

  25. Brenzovich, W. E. Jr. et al. Gold-catalyzed intramolecular aminoarylation of alkenes: C—C bond formation through bimolecular reductive elimination. Angew. Chem. Int. Ed. 49, 5519–5522 (2010).

    Article  CAS  Google Scholar 

  26. Tu, J.-L., Tang, W. & Liu, F. Photoredox-neutral alkene aminoarylation for the synthesis of 1,4,5,6-tetrahydropyridazines. Org. Chem. Front. 8, 3712–3717 (2021).

    Article  CAS  Google Scholar 

  27. Bunescu, A., Abdelhamid, Y. & Gaunt, M. J. Multicomponent alkene azidoarylation by anion-mediated dual catalysis. Nature 598, 597–603 (2021).

    Article  PubMed  Google Scholar 

  28. Cai, Y., Chatterjee, S. & Ritter, T. Photoinduced copper-catalyzed late-stage azidoarylation of alkenes via arylthianthrenium salts. J. Am. Chem. Soc. 145, 13542–13548 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Truce, W. E., Ray, W. J., Norman, O. L. & Eickemeyer, D. B. Rearrangements of aryl sulfones. I. The metalation and rearrangement of mesityl phenyl sulfone1. J. Am. Chem. Soc. 80, 3625–3629 (1958).

    Article  CAS  Google Scholar 

  30. Allen, A. R., Noten, E. A. & Stephenson, C. R. J. Aryl transfer strategies mediated by photoinduced electron transfer. Chem. Rev. 122, 2695–2751 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Whalley, D. M. & Greaney, M. F. Recent advances in the Smiles rearrangement: new opportunities for arylation. Synthesis 54, 1908–1918 (2022).

    Article  CAS  Google Scholar 

  32. Henderson, A. R. P., Kosowan, J. R. & Wood, T. E. The Truce–Smiles rearrangement and related reactions: a review. Can. J. Chem. 95, 483–504 (2017).

    Article  CAS  Google Scholar 

  33. Holden, C. M. & Greaney, M. F. Modern aspects of the Smiles rearrangement. Chem. Eur. J. 23, 8992–9008 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Loven, R. & Speckamp, W. N. A novel 1,4 arylradical rearrangement. Tetrahedron 13, 1567–1570 (1972).

    Article  Google Scholar 

  35. Motherwell, W. B. & Pennell, A. M. K. A novel route to biaryls via intramolecular free radical ipso substitution reactions. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39910000877 (1991).

  36. Tada, M., Shijima, H. & Nakamura, M. Smiles-type free radical rearrangement of aromatic sulfonates and sulfonamides: syntheses of arylethanols and arylethylamines. Org. Biomol. Chem. 1, 2499–2505 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Monos, T. M., McAtee, R. C. & Stephenson, C. R. J. Arylsulfonylacetamides as bifunctional reagents for alkene aminoarylation. Science 361, 1369–1373 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Allen, A. R. et al. Mechanism of visible light-mediated alkene aminoarylation with arylsulfonylacetamides. ACS Catal. 12, 8511–8526 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McAtee, R. C., Noten, E. A. & Stephenson, C. R. J. Arene dearomatization through a catalytic N-centered radical cascade reaction. Nat. Commun. 11, 2528 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Noten, E. A., McAtee, R. C. & Stephenson, C. R. J. Catalytic intramolecular aminoarylation of unactivated alkenes with aryl sulfonamides. Chem. Sci. 13, 6942–6949 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Irikura, K. K. & Todua, N. G. Facile Smiles-type rearrangement in radical cations of N-acyl arylsulfonamides and analogs. Rapid Commun. Mass Spectrom. 28, 829–834 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liang, Y., Simón-Manso, Y., Neta, P., Yang, X. & Stein, S. E. CID fragmentation of deprotonated N-acyl aromatic sulfonamides. Smiles-type and nitrogen–oxygen rearrangements. J. Am. Soc. Mass. Spectrom. 32, 806–814 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Matos, P. M., Lewis, W., Moore, J. C. & Stockman, R. A. Sulfonimidates: useful synthetic intermediates for sulfoximine synthesis via C–S bond formation. Org. Lett. 20, 3674–3677 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Hervieu, C. et al. Asymmetric, visible light-mediated radical sulfinyl-Smiles rearrangement to access all-carbon quaternary stereocentres. Nat. Chem. 13, 327–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Tian, Q., He, P. & Kuang, C. Copper-catalyzed arylsulfonylation of N-arylsulfonyl-acrylamides with arylsulfonohydrazides: synthesis of sulfonated oxindoles. Org. Biomol. Chem. 12, 6349–6353 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Shi, L., Wang, H., Yang, H. & Fu, H. Iron-catalyzed arylsulfonylation of activated alkenes. Synlett 26, 688–694 (2015).

    Article  CAS  Google Scholar 

  47. Wang, H., Sun, S. & Cheng, J. Copper-catalyzed arylsulfonylation and cyclizative carbonation of N-(arylsulfonyl)acrylamides involving desulfonative arrangement toward sulfonated oxindoles. Org. Lett. 19, 5844–5847 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Kong, W., Casimiro, M., Fuentes, N., Merino, E. & Nevado, C. Metal-free aryltrifluoromethylation of activated alkenes. Angew. Chem. Int. Ed. 52, 13086–13090 (2013).

    Article  CAS  Google Scholar 

  49. Hervieu, C. et al. Chiral arylsulfinylamides: all-in-one reagents for visible light-mediated asymmetric alkene aminoarylations. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2022-jvxj1 (2022).

  50. Sephton, T., Large, J. M., Butterworth, S. & Greaney, M. F. Diarylamine synthesis via desulfinylative Smiles rearrangement. Org. Lett. 24, 1132–1135 (2022).

  51. Yozo, M., Yuji, N. & Masayoshi, K. An electron spin resonance spectroscopic investigation of N-sulfinylaminyls. Chem. Lett. 7, 521–524 (1978).

    Article  Google Scholar 

  52. Yozo, M. & Yuji, N. Electron spin resonance spectra of sulfinamidyl radicals and a comparison of hyperfine splitting constants with sulfenamidyl and sulfonamidyl radicals. Bull. Chem. Soc. Jpn 63, 1154–1159 (1990).

    Article  Google Scholar 

  53. Baban, J. A. & Roberts, B. P. An electron spin resonance study of dialkylaminothiyl (R2NS·), dialkylaminosulphinyl (R2NSO), and alkyl(sulphinyl)aminyl [RNS(O)X] radicals. Radical addition to N-sulphinylamines. J. Chem. Soc. Perkin Trans. 2, 678–683 (1978).

    Article  Google Scholar 

  54. Xue, F. et al. A desulfurative strategy for the generation of alkyl radicals enabled by visible-light photoredox catalysis. Angew. Chem. Int. Ed. 57, 6667–6671 (2018).

    Article  CAS  Google Scholar 

  55. Di, J. et al. Regiospecific alkyl addition of (hetero)arene-fused thiophenes enabled by a visible-light-mediated photocatalytic desulfuration approach. Chem. Commun. 54, 4692–4695 (2018).

    Article  CAS  Google Scholar 

  56. Litwinienko, G. & Ingold, K. U. Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J. Org. Chem. 69, 5888–5896 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Nicewicz, D., Roth, H. & Romero, N. Experimental and calculated electrochemical potentials of common organic molecules for applications to single-electron redox chemistry. Synlett 27, 714–723 (2015).

    Article  Google Scholar 

  58. Devery, J. J., Nguyen, J. D., Dai, C. & Stephenson, C. R. J. Light-mediated reductive debromination of unactivated alkyl and aryl bromides. ACS Catal. 6, 5962–5967 (2016).

    Article  CAS  Google Scholar 

  59. De Vleeschouwer, F., Van Speybroeck, V., Waroquier, M., Geerlings, P. & De Proft, F. Electrophilicity and nucleophilicity index for radicals. Org. Lett. 9, 2721–2724 (2007).

    Article  PubMed  Google Scholar 

  60. Herron, J. T. & Huie, R. E. Rate constants at 298 K for the reactions SO + SO + M → (SO)2 + M and SO + (SO)2 → SO2 + S2O. Chem. Phys. Lett. 76, 322–324 (1980).

    Article  CAS  Google Scholar 

  61. So, C. M., Kume, S. & Hayashi, T. Rhodium-catalyzed asymmetric hydroarylation of 3-pyrrolines giving 3-arylpyrrolidines: protonation as a key step. J. Am. Chem. Soc. 135, 10990–10993 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM144286. We thank the University of Michigan for additional funding and J. W. Kampf for collecting and analysing X-ray crystallography data.

Author information

Authors and Affiliations

Authors

Contributions

E.A.N. and C.R.J.S. conceived the project, and E.A.N. executed the initial reaction discovery. E.A.N., C.H.N. and R.M.W. conducted the experiments and analysis. E.A.N. wrote the paper with input from C.R.J.S., C.H.N. and R.M.W.

Corresponding author

Correspondence to Corey R. J. Stephenson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Robert Stockman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–200, experimental procedures and details, characterization data, NMR spectra, chiral high-performance liquid chromatography and supercritical fluid chromatography traces and X-ray crystallographic data.

Supplementary Data 1

Crystallographic data for compound 2u. CCDC reference 2150974.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noten, E.A., Ng, C.H., Wolesensky, R.M. et al. A general alkene aminoarylation enabled by N-centred radical reactivity of sulfinamides. Nat. Chem. 16, 599–606 (2024). https://doi.org/10.1038/s41557-023-01404-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01404-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing