Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast Raman observation of the perpendicular intermediate phantom state of stilbene photoisomerization

Abstract

Transcis photoisomerization is generally described by a model in which the reaction proceeds via a common intermediate having a perpendicular conformation around the rotating bond, irrespective of from which isomer the reaction starts. Nevertheless, such an intermediate has yet to be identified unambiguously, and it is often called the ‘phantom’ state. Here we present the structural identification of the common, perpendicular intermediate of stilbene photoisomerization using ultrafast Raman spectroscopy. Our results reveal ultrafast birth and decay of an identical, short-lived transient that exhibits a vibrational signature characteristic of the perpendicular state upon photoexcitation of the trans and cis forms. In combination with ab initio molecular dynamics simulations, it is shown that the photoexcited trans and cis forms are funnelled off to the ground state through the same, perpendicular intermediate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ultrafast photoisomerization of stilbenes.
Fig. 2: UV-FSRS of dmSB.
Fig. 3: Isotope effect on femtosecond time-resolved Raman data.
Fig. 4: AIMD simulation of dmSB photoisomerization.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the article or Supplementary Information. Source data are provided with this paper. Additional raw data are available from the corresponding author on reasonable request.

References

  1. Hellingwerf, K. J., Hendriks, J. & Gensch, T. Photoactive yellow protein, a new type of photoreceptor protein: will this ‘yellow lab’ bring us where we want to go? J. Phys. Chem. A 107, 1082–1094 (2003).

    CAS  Google Scholar 

  2. Rockwell, N. C., Su, Y.-S. & Lagarias, J. C. Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57, 837–858 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith, S. O. Structure and activation of the visual pigment rhodopsin. Annu. Rev. Biophys. 39, 309–328 (2010).

    CAS  PubMed  Google Scholar 

  4. Ernst, O. P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114, 126–163 (2014).

    CAS  PubMed  Google Scholar 

  5. Feringa, B. L. & Browne, W. R. Molecular Switches Vol. 42 (Wiley Online Library, 2001).

  6. Balzani, V., Credi, A. & Venturi, M. Photochemical conversion of solar energy. ChemSusChem 1, 26–58 (2008).

    CAS  PubMed  Google Scholar 

  7. Saltiel, J. Perdeuteriostilbene. The role of phantom states in the cistrans photoisomerization of stilbenes. J. Am. Chem. Soc. 89, 1036–1037 (1967).

    CAS  Google Scholar 

  8. Teschke, O., Ippen, E. P. & Holtom, G. R. Picosecond dynamics of the singlet excited state of trans- and cis-stilbene. Chem. Phys. Lett. 52, 233–235 (1977).

    CAS  Google Scholar 

  9. Greene, B. I., Hochstrasser, R. M. & Weisman, R. B. Spectroscopic study of the picosecond photoisomerization of stilbene. Chem. Phys. Lett. 62, 427–430 (1979).

    CAS  Google Scholar 

  10. Myers, A. B. & Mathies, R. A. Excited-state torsional dynamics of cis-stilbene from resonance Raman intensities. J. Chem. Phys. 81, 1552–1558 (1984).

    CAS  Google Scholar 

  11. Abrash, S., Repinec, S. & Hochstrasser, R. M. The viscosity dependence and reaction coordinate for isomerization of cis‐stilbene. J. Chem. Phys. 93, 1041–1053 (1990).

    CAS  Google Scholar 

  12. Waldeck, D. H. Photoisomerization dynamics of stilbenes. Chem. Rev. 91, 415–436 (1991).

    CAS  Google Scholar 

  13. Saltiel, J., Waller, A. S. & Sears, D. F. The temperature and medium dependencies of cis-stilbene fluorescence. The energetics of twisting in the lowest excited singlet state. J. Am. Chem. Soc. 115, 2453–2465 (1993).

    CAS  Google Scholar 

  14. Todd, D. C. & Fleming, G. R. Cis‐stilbene isomerization: temperature dependence and the role of mechanical friction. J. Chem. Phys. 98, 269–279 (1993).

    CAS  Google Scholar 

  15. Takeuchi, S. & Tahara, T. Vibrational coherence of S1 trans-stilbene in solution observed by 40-fs-resolved absorption spectroscopy: comparison of the low-frequency vibration appearing in the frequency-domain and time-domain spectroscopies. Chem. Phys. Lett. 326, 430–438 (2000).

    CAS  Google Scholar 

  16. Iwata, K., Ozawa, R. & Hamaguchi, H. Analysis of the solvent- and temperature-dependent Raman spectral changes of S1 trans-stilbene and the mechanism of the trans to cis isomerization: dynamic polarization model of vibrational dephasing and the CC double-bond rotation. J. Phys. Chem. A 106, 3614–3620 (2002).

    CAS  Google Scholar 

  17. Quenneville, J. & Martínez, T. J. Ab initio study of cistrans photoisomerization in stilbene and ethylene. J. Phys. Chem. A 107, 829–837 (2003).

    CAS  Google Scholar 

  18. Kwok, W. M. et al. Time-resolved resonance Raman study of S1 cis-stilbene and its deuterated isotopomers. J. Raman Spectrosc. 34, 886–891 (2003).

    CAS  Google Scholar 

  19. Takeuchi, S. et al. Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science 322, 1073–1077 (2008).

    CAS  PubMed  Google Scholar 

  20. Kovalenko, S. A., Dobryakov, A. L., Ioffe, I. & Ernsting, N. P. Evidence for the phantom state in photoinduced cistrans isomerization of stilbene. Chem. Phys. Lett. 493, 255–258 (2010).

    CAS  Google Scholar 

  21. Weigel, A. & Ernsting, N. P. Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 114, 7879–7893 (2010).

    CAS  Google Scholar 

  22. Minezawa, N. & Gordon, M. S. Photoisomerization of stilbene: a spin-flip density functional theory approach. J. Phys. Chem. A 115, 7901–7911 (2011).

    CAS  Google Scholar 

  23. Nakamura, T., Takeuchi, S., Taketsugu, T. & Tahara, T. Femtosecond fluorescence study of the reaction pathways and nature of the reactive S1 state of cis-stilbene. Phys. Chem. Chem. Phys. 14, 6225–6232 (2012).

    Google Scholar 

  24. Tomasello, G., Garavelli, M. & Orlandi, G. Tracking the stilbene photoisomerization in the S1 state using RASSCF. Phys. Chem. Chem. Phys. 15, 19763–19773 (2013).

    CAS  Google Scholar 

  25. Harabuchi, Y., Keipert, K., Zahariev, F., Taketsugu, T. & Gordon, M. S. Dynamics simulations with spin-flip time-dependent density functional theory: photoisomerization and photocyclization mechanisms of cis-stilbene in ππ* states. J. Phys. Chem. A 118, 11987–11998 (2014).

    CAS  Google Scholar 

  26. Weir, H., Williams, M., Parrish, R. M., Hohenstein, E. G. & Martínez, T. J. Nonadiabatic dynamics of photoexcited cis-stilbene using ab initio multiple spawning. J. Phys. Chem. B 124, 5476–5487 (2020).

    CAS  PubMed  Google Scholar 

  27. Williams, M. et al. Unmasking the cis-stilbene phantom state via vacuum ultraviolet time-resolved photoelectron spectroscopy and ab initio multiple spawning. J. Phys. Chem. Lett. 12, 6363–6369 (2021).

    CAS  PubMed  Google Scholar 

  28. Berndt, F. et al. Long-lived perpendicular conformation in the photoisomerization path of 1,1′-dimethylstilbene and 1,1′-diethylstilbene. Chem. Phys. Lett. 544, 39–42 (2012).

    CAS  Google Scholar 

  29. Kukura, P., McCamant, D. W. & Mathies, R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58, 461–488 (2007).

    CAS  PubMed  Google Scholar 

  30. Dietze, D. R. & Mathies, R. A. Femtosecond stimulated Raman spectroscopy. ChemPhysChem 17, 1224–1251 (2016).

    CAS  PubMed  Google Scholar 

  31. Kuramochi, H., Takeuchi, S. & Tahara, T. Ultrafast structural evolution of photoactive yellow protein chromophore revealed by ultraviolet resonance femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 3, 2025–2029 (2012).

    CAS  Google Scholar 

  32. Kuramochi, H., Fujisawa, T., Takeuchi, S. & Tahara, T. Broadband stimulated Raman spectroscopy in the deep ultraviolet region. Chem. Phys. Lett. 683, 543–546 (2017).

    CAS  Google Scholar 

  33. Tahara, S., Kuramochi, H., Takeuchi, S. & Tahara, T. Protein dynamics preceding photoisomerization of the retinal chromophore in bacteriorhodopsin revealed by deep-UV femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 10, 5422–5427 (2019).

    CAS  PubMed  Google Scholar 

  34. Kuramochi, H., Takeuchi, S., Kamikubo, H., Kataoka, M. & Tahara, T. Skeletal structure of the chromophore of photoactive yellow protein in the excited state investigated by ultraviolet femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 125, 6154–6161 (2021).

    CAS  PubMed  Google Scholar 

  35. Muszkat, K. A. & Fischer, E. Structure, spectra, photochemistry, and thermal reactions of the 4a,4b-dihydrophenanthrenes. J. Chem. Soc. B, 662–678 (1967).

  36. Repinec, S. T., Sension, R. J., Szarka, A. Z. & Hochstrasser, R. M. Femtosecond laser studies of the cis-stilbene photoisomerization reactions: the cis-stilbene to dihydrophenanthrene reaction. J. Phys. Chem. 95, 10380–10385 (1991).

    CAS  Google Scholar 

  37. Saltiel, J. & Gupta, S. Photochemistry of the stilbenes in methanol. Trapping the common phantom singlet state. J. Phys. Chem. A 122, 6089–6099 (2018).

    CAS  Google Scholar 

  38. Harabuchi, Y. et al. Ab initio molecular dynamics study of the photoreaction of 1,1′-dimethylstilbene upon S0 → S1 excitation. J. Phys. Chem. A 120, 8804–8812 (2016).

    CAS  Google Scholar 

  39. Iwamura, M., Watanabe, H., Ishii, K., Takeuchi, S. & Tahara, T. Coherent nuclear dynamics in ultrafast photoinduced structural change of bis(diimine)copper(I) complex. J. Am. Chem. Soc. 133, 7728–7736 (2011).

    CAS  PubMed  Google Scholar 

  40. Maeda, S., Harabuchi, Y., Ono, Y., Taketsugu, T. & Morokuma, K. Intrinsic reaction coordinate: calculation, bifurcation, and automated search. Int. J. Quantum Chem. 115, 258–269 (2015).

    CAS  Google Scholar 

  41. Shao, Y., Head-Gordon, M. & Krylov, A. I. The spin–flip approach within time-dependent density functional theory: theory and applications to diradicals. J. Chem. Phys. 118, 4807–4818 (2003).

    CAS  Google Scholar 

  42. Schmidt, M. W. et al. General atomic and molecular electronic-structure system. J. Comput. Chem. 14, 1347–1363 (1993).

    CAS  Google Scholar 

  43. Maeda, S. et al. Implementation and performance of the artificial force induced reaction method in the GRRM17 program. J. Comput. Chem. 39, 233–250 (2018).

    CAS  PubMed  Google Scholar 

  44. Harabuchi, Y. et al. SPPR, version 2020.1, a homemade program for AIMD simulation (Hokkaido University, 2020).

  45. Werner, H. J. Third-order multireference perturbation theory—the CASPT3 method. Mol. Phys. 89, 645–661 (1996).

    CAS  Google Scholar 

  46. Werner, H. J. et al. Molpro, version 2012.1, a package of ab initio programs. Molpro https://www.molpro.net (2012).

Download references

Acknowledgements

This work was partly supported by JST, PRESTO grant number JPMJPR17P4 to H.K. and CREST grant number JPMJCR1902 to T. Taketsugu, and JSPS KAKENHI grant numbers JP16H04102 to S.T., and JP25104005 and JP21K18943 to T. Tahara.

Author information

Authors and Affiliations

Authors

Contributions

H.K., S.T. and T. Tahara conceived and designed the research. H.K., Z.W., P.K., L.L. and S.T. performed spectroscopic measurements and analysed the data. M.O. synthesized trans- and cis-dimethyl-stilbene and their isotopomers. T. Tsutsumi, K.S. and T. Taketsugu performed theoretical calculations. H.K. and T. Tahara wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Tahei Tahara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Christopher Elles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Electronic structure of the perpendicular state.

Potential energy curves for the S0, S1, and S2 states, colored by each dipole moment, at the SF-TDDFT(BHHLYP)/6-31 G(d) level of theory. The behavior of the potential energy of the S1 state changes near (S1)twist, where the dipole moment suddenly increases, indicating that the perpendicular state is a zwitterionic state.

Source data

Extended Data Fig. 2 Ultraviolet resonance femtosecond stimulated Raman spectrum of parent cis-stilbene.

UV-FSRS spectrum of parent cis-stilbene in acetonitrile (1 mM) obtained at 1 ps after photoexcitation at 266 nm. The Raman pump wavelength was tuned to 354 nm, which is rigorously resonant with the UV transient absorption band. The UV-FSRS spectrum of cis-dmSB at 1 ps is also shown for comparison. The white-shaded regions are disturbed by the imperfect subtraction of the solvent Raman bands.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Sections 1–9 and discussion.

Source data

Source Data Fig. 1

Time-resolved absorption data.

Source Data Fig. 2

Time-resolved Raman data.

Source Data Fig. 3

Time-resolved Raman data of the isotopomers.

Source Data Fig. 4

AIMD simulation data.

Source Data Extended Data Fig. 1

Analysis of the dipole moment along the reaction pathways.

Source Data Extended Data Fig. 2

Time-resolved Raman data of parent stilbene.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuramochi, H., Tsutsumi, T., Saita, K. et al. Ultrafast Raman observation of the perpendicular intermediate phantom state of stilbene photoisomerization. Nat. Chem. 16, 22–27 (2024). https://doi.org/10.1038/s41557-023-01397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01397-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing