Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery and synthesis of atropisomerically chiral acyl-substituted stable vinyl sulfoxonium ylides

Abstract

Atropisomerism is a type of conformational chirality that plays a critical role in various fields of chemistry, including synthetic, medicinal and material chemistry, and its impact has been widely recognized. Although chiral atropisomerism in rotationally restricted aryl–aryl bonds has garnered substantial interest and led to important discoveries in chiral catalysts and drug development, the exploration of non-aryl atropisomers has fallen behind. Here we reveal a previously unexplored form of non-aryl atropisomerism by linking a sterically congested olefin to a sulfoxonium ylide. A streamlined synthetic approach to these novel molecules was developed through the hydrofunctionalization of alkynyl sulfoxonium ylides. Notably, an enantioselective organocatalytic strategy was developed to prepare these non-aryl atropisomers in high optical purity. This form of atropisomerism offers new routes for investigating the functional properties of axially chiral molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative atropisomeric chiral molecules and the design of non-aryl atropisomeric chirality.
Fig. 2: Difunctionalization of the alkynyl sulfoxonium ylide and calculated rotational barriers for selected VSYs.
Fig. 3: Transformations of chiral VSYs.
Fig. 4: Mechanism study based on DFT calculations.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2199007 (1), 2199008 (44), 2255173 (73), 2255174 (86) and 2259612 (88). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Experimental procedures, characterization of new compounds and all other data supporting the findings are available in the Supplementary Information.

References

  1. Miyashita, A. et al. Synthesis of 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenation of α-(acylamino)acrylic acids. J. Am. Chem. Soc. 102, 7932–7934 (1980).

    CAS  Google Scholar 

  2. Akiyama, T. & Mori, K. Stronger Brønsted acids: recent progress. Chem. Rev. 115, 9277–9306 (2015).

    CAS  PubMed  Google Scholar 

  3. Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    CAS  PubMed  Google Scholar 

  4. Cheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan, B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).

    CAS  PubMed  Google Scholar 

  5. Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 44, 3418–3430 (2015).

    CAS  Google Scholar 

  6. Cheng, D.-J. & Shao, Y.-D. Advances in the catalytic asymmetric synthesis of atropisomeric hexatomic N-heterobiaryls. Adv. Synth. Catal. 362, 3081–3099 (2020).

    CAS  Google Scholar 

  7. Wang, Y.-B. & Tan, B. Construction of axially chiral compounds via asymmetric organocatalysis. Acc. Chem. Res. 51, 534–547 (2018).

    CAS  PubMed  Google Scholar 

  8. Kumarasamy, E., Raghunathan, R., Sibi, M. P. & Sivaguru, J. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations. Chem. Rev. 115, 11239–11300 (2015).

    CAS  PubMed  Google Scholar 

  9. Wu, S., Xiang, S.-H., Cheng, J. K. & Tan, B. Axially chiral alkenes: atroposelective synthesis and applications. Tetrahedron Chem 1, 100009 (2022).

    Google Scholar 

  10. Mei, G.-J., Koay, W. L., Guan, C.-Y. & Lu, Y. X. Atropisomers beyond the C–C axial chirality: advances in catalytic asymmetric synthesis. Chem 8, 1855–1893 (2022).

    CAS  Google Scholar 

  11. Faseke, V. C. & Sparr, C. Stereoselective arene-forming aldol condensation: synthesis of axially chiral aromatic amides. Angew. Chem. Int. Ed. 55, 7261–7264 (2016).

    Google Scholar 

  12. Fugard, A. J. et al. Hydrogen-bond-enabled dynamic kinetic resolution of axially chiral amides mediated by a chiral counterion. Angew. Chem. Int. Ed. 58, 2795–2798 (2019).

    CAS  Google Scholar 

  13. Barrett, K. T., Metrano, A. J., Rablen, P. R. & Miller, S. J. Spontaneous transfer of chirality in an atropisomerically enriched two-axis system. Nature 509, 71–75 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Frey, J. et al. Enantioselective synthesis of N–C axially chiral compounds by Cu-catalyzed atroposelective aryl amination. Angew. Chem. Int. Ed. 59, 8844–8848 (2020).

    CAS  Google Scholar 

  15. Bai, H.-Y. et al. Highly atroposelective synthesis of nonbiaryl naphthalene-1,2-diamine N–C atropisomers through direct enantioselective C–H amination. Nat. Commun. 10, 3063 (2019).

    PubMed Central  Google Scholar 

  16. Li, S.-L. et al. Atroposelective catalytic asymmetric allylic alkylation reaction for axially chiral anilides with achiral Morita–Baylis–Hillman carbonates. J. Am. Chem. Soc. 140, 12836–12843 (2018).

    CAS  PubMed  Google Scholar 

  17. Li, H. et al. Enantioselective synthesis of C–N axially chiral N-aryloxindoles by asymmetric rhodium-catalyzed dual C–H activation. Angew. Chem. Int. Ed. 58, 6732–6736 (2019).

    CAS  Google Scholar 

  18. Zhu, S. et al. Organocatalytic atroposelective construction of axially chiral arylquinones. Nat. Commun. 10, 4268 (2019).

    PubMed Central  Google Scholar 

  19. Chen, Y.-H. et al. Organocatalytic enantioselective synthesis of atropisomeric aryl-p-quinones: platform molecules for diversity-oriented synthesis of biaryldiols. Angew. Chem. Int. Ed. 59, 11374–11378 (2020).

    CAS  Google Scholar 

  20. Feng, J., Li, B., He, Y. & Gu, Z. Enantioselective synthesis of atropisomeric vinyl arene compounds by palladium catalysis: a carbene strategy. Angew. Chem. Int. Ed. 55, 2186–2190 (2016).

    CAS  Google Scholar 

  21. Pan, C., Zhu, Z., Zhang, M. & Gu, Z. Palladium-catalyzed enantioselective synthesis of 2-aryl cyclohex-2-enone atropisomers: platform molecules for the divergent synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 56, 4777–4781 (2017).

    CAS  Google Scholar 

  22. Liang, Y. et al. Enantioselective construction of axially chiral amino sulfide vinyl arenes by chiral sulfide-catalyzed electrophilic carbothiolation of alkynes. Angew. Chem. Int. Ed. 59, 4959–4964 (2020).

    CAS  Google Scholar 

  23. Fang, Z.-J. et al. Asymmetric synthesis of axially chiral isoquinolones: nickel-catalyzed denitrogenative transannulation. Angew. Chem. Int. Ed. 54, 9528–9532 (2015).

    CAS  Google Scholar 

  24. Zheng, S.-C. et al. Organocatalytic atroposelective synthesis of axially chiral styrenes. Nat. Commun. 8, 15238 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Zhang, N. et al. Organocatalytic atropo- and E/Z-selective Michael addition reaction of ynones with α-amido sulfones as sulfone-type nucleophile. Org. Chem. Front. 6, 451–455 (2019).

    Google Scholar 

  26. Yan, J.-L. et al. Carbene-catalyzed atroposelective synthesis of axially chiral styrenes. Nat. Commun. 13, 84 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Boer, F. P., Doorakian, G. A., Freedman, H. H. & McKinley, S. V. Study of the rotational process in sterically hindered dienes. J. Am. Chem. Soc. 92, 1225–1233 (1970).

    CAS  Google Scholar 

  28. Boer, F. P., Flynn, J. J., Freedman, H. H., McKinley, S. V. & Sandel, V. R. Hindered diene rotation by virtue of intramolecular tin–bromine coordination. J. Am. Chem. Soc. 89, 5068–5069 (1967).

    CAS  Google Scholar 

  29. Rösner, M. & Köbrich, G. Partial enantiomerization of an atropisomeric butadiene. Angew. Chem. Int. Ed. 13, 741–742 (1974).

    Google Scholar 

  30. Pasto, D. J. & Borchardt, J. K. Cycloaddition reactions of cyclopropane-containing systems. VII. Chiral 1,2-bisalkylidenecyclopentanes. Direct formation via cycloaddition reactions of chiral substituted alkenylidenecyclopropanes. J. Am. Chem. Soc. 96, 6220–6221 (1974).

    CAS  Google Scholar 

  31. Warren, S., Chow, A., Fraenkel, G. & RajanBabu, T. V. Axial chirality in 1,4-disubstituted (ZZ)-1,3-dienes. Surprisingly low energies of activation for the enantiomerization in synthetically useful fluxional molecules. J. Am. Chem. Soc. 125, 15402–15410 (2003).

    CAS  PubMed  Google Scholar 

  32. Zhang, Z.-X., Zhai, T.-Y. & Ye, L.-W. Synthesis of axially chiral compounds through catalytic asymmetric reactions of alkynes. Chem. Catal. 1, 1378–1412 (2021).

    CAS  Google Scholar 

  33. Zhang, L. et al. Design and atroposelective construction of IAN analogues by organocatalytic asymmetric heteroannulation of alkynes. Angew. Chem. Int. Ed. 59, 23077–23082 (2020).

    CAS  Google Scholar 

  34. Wang, Y.-B. et al. Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs. Nat. Catal. 2, 504–513 (2019).

    CAS  Google Scholar 

  35. Huang, A. et al. Asymmetric one-pot construction of three stereogenic elements: chiral carbon center, stereoisomeric alkenes, and chirality of axial styrenes. Org. Lett. 21, 95–99 (2019).

    CAS  PubMed  Google Scholar 

  36. Jia, S. et al. Organocatalytic cascade reactions for multi-functionalized chiral cyclic ethers through vinylidene ortho-quinone methides. Chem. Commun. 57, 11334–11337 (2021).

    CAS  Google Scholar 

  37. Liu, Y. et al. Organocatalytic atroposelective intramolecular [4 + 2] cycloaddition: synthesis of axially chiral heterobiaryls. Angew. Chem. Int. Ed. 57, 6491–6495 (2018).

    CAS  Google Scholar 

  38. Jia, S., Li, S., Liu, Y., Qin, W. & Yan, H. Enantioselective control of both helical and axial stereogenic elements though an organocatalytic approach. Angew. Chem. Int. Ed. 58, 18496–18501 (2019).

    CAS  Google Scholar 

  39. Peng, L. et al. Organocatalytic asymmetric annulation of ortho-alkynylanilines: synthesis of axially chiral naphthyl-C2-indoles. Angew. Chem. Int. Ed. 58, 17199–17204 (2019).

    CAS  Google Scholar 

  40. Jia, S. et al. Organocatalytic enantioselective construction of axially chiral sulfone-containing styrenes. J. Am. Chem. Soc. 140, 7056–7060 (2018).

    CAS  PubMed  Google Scholar 

  41. Qin, W., Liu, Y. & Yan, H. Enantioselective synthesis of atropisomers via vinylidene ortho-quinone methides (VQMs). Acc. Chem. Res. 55, 2780–2795 (2022).

    CAS  Google Scholar 

  42. Huang, S. et al. Metal-free difunctionalization of alkynes to access tetrasubstituted olefins through spontaneous selenosulfonylation of vinylidene ortho-quinone methide (VQM). Org. Biomol. Chem. 17, 1121–1129 (2019).

    CAS  PubMed  Google Scholar 

  43. Tan, Y. et al. Enantioselective construction of vicinal diaxial styrenes and multiaxis system via organocatalysis. J. Am. Chem. Soc. 140, 16893–16898 (2018).

    CAS  Google Scholar 

  44. Furusawa, M. et al. Base-catalyzed Schmittel cycloisomerization of o-phenylenediyne-linked bis(arenol)s to indeno[1,2-c]chromenes. Tetrahedron Lett. 54, 7107–7110 (2013).

    CAS  Google Scholar 

  45. Li, Q.-Z. et al. Organocatalytic enantioselective construction of heterocycle-substituted styrenes with chiral atropisomerism. Org. Lett. 22, 2448–2453 (2020).

    CAS  PubMed  Google Scholar 

  46. Xu, M.-M. et al. Enantioselective synthesis of axially chiral biaryls by Diels–Alder/retro-Diels–Alder reaction of 2-pyrones with alkynes. J. Am. Chem. Soc. 143, 8993–9001 (2021).

    CAS  PubMed  Google Scholar 

  47. Zhang, X. et al. Asymmetric azide–alkyne cycloaddition with Ir(I)/squaramide cooperative catalysis: atroposelective synthesis of axially chiral aryltriazoles. J. Am. Chem. Soc. 144, 6200–6207 (2022).

    CAS  PubMed  Google Scholar 

  48. Li, L. et al. Synthesis of I(III)/S(VI) reagents and their reactivity in photochemical cycloaddition reactions with unsaturated bonds. Nat. Commun. 13, 6588 (2022).

    CAS  PubMed Central  Google Scholar 

  49. Gallo, R. D. C., Ahmad, A., Metzker, G. & Burtoloso, A. C. B. α,α-Alkylation–halogenation and dihalogenation of sulfoxonium ylides. A direct preparation of geminal difunctionalized ketones. Chem. Eur. J. 23, 16980–16984 (2017).

    CAS  PubMed  Google Scholar 

  50. Mi, R. et al. Rhodium-catalyzed atroposelective access to axially chiral olefins via C–H bond activation and directing group migration. Angew. Chem. Int. Ed. 61, e202111860 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21825101), Hong Kong RGC (16302122, 16300320 and 16309021) and the Shenzhen Science and Technology Innovation Commission (SGDX2019081623241924). We thank Z. Lin for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.W. and Y.H. designed the project. Y.H. directed the project. F.W. conducted the experiments. R.Z. conducted the transformation experiments. Y.Z. performed computation of the rotational barriers and the mechanism study. All authors contributed to designing, performing and analysing the experiments, as well as to the writing of this manuscript.

Corresponding author

Correspondence to Yong Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Dao-Juan Cheng, Michele Mancinelli and Takanori Shibata for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–9, Figs. 1–12, Tables 1–44 and refs. 1–18.

Supplementary Data 1

Crystallographic data for compound 1; CCDC reference 2199007.

Supplementary Data 2

Crystallographic data for compound 44; CCDC reference 2199008.

Supplementary Data 3

Crystallographic data for compound 73; CCDC reference 2255173.

Supplementary Data 4

Crystallographic data for compound 86; CCDC reference 2255174.

Supplementary Data 5

Crystallographic data for compound 88; CCDC reference 2259612.

Supplementary Data 6

Computational data for DFT calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Zhang, Y., Zhu, R. et al. Discovery and synthesis of atropisomerically chiral acyl-substituted stable vinyl sulfoxonium ylides. Nat. Chem. 16, 132–139 (2024). https://doi.org/10.1038/s41557-023-01358-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01358-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing