Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aromatic pentaamide macrocycles bind anions with high affinity for transport across biomembranes

Abstract

The convergent positioning of functional groups in biomacromolecules leads to good binding, catalytic and transport capabilities. Synthetic frameworks capable of convergently locking functional groups with minimized conformational uncertainty—leading to similar properties—are highly desirable but rare. Here we report C5-symmetric aromatic pentaamide macrocycles synthesized in one pot from the corresponding monomers. Their crystal structures reveal a star-shaped, fully constrained backbone that causes ten alternating NH/CH hydrogen-bond donors and five large amide dipoles to orient towards the centre of the macrocycle. With a highly electropositive cavity in a high-energy unbound state, the macrocycles bind anions in a 1:1 stoichiometry in solution, with high affinity for halides and very high affinity for oxoanions. We demonstrate that such macrocycles are able to transport anions across lipid bilayers with a high chloride selectivity and restore the depleted airway surface liquid of cystic fibrosis airway cell cultures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Linear oligoamide 1 and macrocycles c5 consisting of basic residues derived from 5-amino-N-acylanthranilic acid.
Fig. 2: Binding stoichiometry of macrocycles c5 with anions.
Fig. 3: 1H NMR spectra and association constants (log Ka) of c5a.
Fig. 4: Transmembrane transport of halide ions promoted by macrocycle c5a.
Fig. 5: Macrocycle c5a restores ASL volume haemostasis in CF airway epithelial cultures.

Similar content being viewed by others

Data availability

Single-crystal X-ray structure data for macrocycle c5c (CCDC reference number: 2124841) can be obtained free of charge from the Cambridge Crystallographic Data Centre at www.ccdc.cam.ac.uk/data_request/cif. The source data for Supplementary Figs. 1, 2, 5, 6a,b, 1014, 17 and 18 can be obtained free of charge from Figshare at https://doi.org/10.6084/m9.figshare.23302427 (ref. 60). Source data are provided with this paper.

Code availability

The codes used in the calculations of data from vesicle-based halide transport HPTS assays can be obtained free of charge from Figshare at https://doi.org/10.6084/m9.figshare.23302427 (ref. 60).

References

  1. Whitty, A. Cooperativity and biological complexity. Nat. Chem. Biol. 4, 435–439 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Sui, H. X., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Pflugrath, J. W. & Quiocho, F. A. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature 314, 257–260 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Wu, X., Gilchrist, A. M. & Gale, P. A. Prospects and challenges in anion recognition and transport. Chem 6, 1296–1309 (2020).

    Article  CAS  Google Scholar 

  7. Sessler, J. L., Gale, P. A. & Cho, W.-S. Anion Receptor Chemistry (RSC Publishing, 2006).

    Book  Google Scholar 

  8. John, E. A., Massena, C. J. & Berryman, O. B. Helical anion foldamers in solution. Chem. Rev. 120, 2759–2782 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borissov, A. et al. Anion recognition in water by charge-neutral halogen and chalcogen bonding foldamer receptors. J. Am. Chem. Soc. 141, 4119–4129 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Rebek, J. Jr. Model studies in molecular recognition. Science 235, 1478–1484 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Gong, B. et al. Creating nanocavities of tunable sizes: Hollow helices. Proc. Natl Acad. Sci. USA 99, 11583–11588 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang, H., Léger, J. M. & Huc, I. Aromatic δ-peptides. J. Am. Chem. Soc. 125, 3448–3449 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Höger, S. Shape-persistent macrocycles: from molecules to materials. Chem. Eur. J. 10, 1320–1329 (2004).

    Article  PubMed  Google Scholar 

  14. Guieu, S., Crane, A. K. & MacLachlan, M. J. Campestarenes: novel shape-persistent Schiff base macrocycles. Chem. Commun. 47, 1169–1171 (2011).

    Article  CAS  Google Scholar 

  15. Qin, B. et al. Crystallographic evidence of an unusual, pentagon-shaped folding pattern in a circular aromatic pentamer. Org. Lett. 10, 5127–5130 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, S. M., Chen, C. H. & Flood, A. H. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat. Chem. 5, 704–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Li, Y. & Flood, A. H. Pure C—H hydrogen bonding to chloride ions: a preorganized and rigid macrocyclic receptor. Angew. Chem. Int. Ed. 47, 2649–2652 (2008).

    Article  CAS  Google Scholar 

  18. Bisson, A. P., Lynch, V. M., Monahan, M.-K. C. & Anslyn, E. V. Recognition of anions through NH—π hydrogen bonds in a bicyclic cyclophane—selectivity for nitrate. Angew. Chem. Int. Ed. Engl. 36, 2340–2342 (1997).

    Article  CAS  Google Scholar 

  19. Sessler, J. L. & Davis, J. M. Sapphyrins: versatile anion binding agents. Acc. Chem. Res. 34, 989–997 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Brooks, S. J., Gale, P. A. & Light, M. E. Anion-binding modes in a macrocyclic amidourea. Chem. Commun. 41, 4344–4346 (2006).

    Article  Google Scholar 

  21. Tresca, B. W. et al. Substituent effects in CH hydrogen bond interactions: linear free energy relationships and influence of anions. J. Am. Chem. Soc. 137, 14959–14967 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bondy, C. R. & Loeb, S. J. Amide based receptors for anions. Coord. Chem. Rev. 240, 77–99 (2003).

    Article  CAS  Google Scholar 

  23. Kang, S. O., Begum, R. A. & Bowman-James, K. Amide-based ligands for anion coordination. Angew. Chem. Int. Ed. 45, 7882–7894 (2006).

    Article  CAS  Google Scholar 

  24. Choi, K. H. & Hamilton, A. D. Macrocyclic anion receptors based on directed hydrogen bonding interactions. Coord. Chem. Rev. 240, 101–110 (2003).

    Article  CAS  Google Scholar 

  25. Choi, K. H. & Hamilton, A. D. Selective anion binding by a macrocycle with convergent hydrogen bonding functionality. J. Am. Chem. Soc. 123, 2456–2457 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Yuan, L. H. et al. Highly efficient, one-step macrocyclizations assisted by the folding and preorganization of precursor oligomers. J. Am. Chem. Soc. 126, 11120–11121 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Cao, R. K., Rossdeutcher, R. B., Wu, X. X. & Gong, B. Oligo(5-amino-N-acylanthranilic acids): amide bond formation without coupling reagent and folding upon binding anions. Org. Lett. 22, 7496–7501 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Juwarker, H. & Jeong, K. S. Anion-controlled foldamers. Chem. Soc. Rev. 39, 3664–3674 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Hua, Y., Liu, Y., Chen, C.-H. & Flood, A. H. Hydrophobic collapse of foldamer capsules drives picomolar-level chloride binding in aqueous acetonitrile solutions. J. Am. Chem. Soc. 135, 14401–14412 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Chang, K. J., Kang, B. N., Lee, M. H. & Jeong, K. S. Oligoindole-based foldamers with a helical conformation induced by chloride. J. Am. Chem. Soc. 127, 12214–12215 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Juwarker, H. et al. Anion binding of short, flexible aryl triazole oligomers. J. Org. Chem. 74, 8924–8934 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Helttunen, K. R. et al. Oligoamide foldamers as helical chloride receptors—the influence of electron-withdrawing substituents on anion-binding interactions. Chem. Asian J. 14, 647–654 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Y., Sengupta, A., Raghavachari, K. & Flood, A. H. Anion binding in solution: beyond the electrostatic regime. Chem 3, 411–427 (2017).

    Article  CAS  Google Scholar 

  34. Qiao, B., Anderson, J. R., Pink, M. & Flood, A. H. Size-matched recognition of large anions by cyanostar macrocycles is saved when solvent-bias is avoided. Chem. Commun. 52, 8683–8686 (2016).

    Article  CAS  Google Scholar 

  35. Pike, S. J., Hutchinson, J. J. & Hunter, C. A. H-bond acceptor parameters of anions. J. Am. Chem. Soc. 39, 6700–6706 (2017).

    Article  Google Scholar 

  36. Yawer, M. A., Havel, V. & Sindelar, V. A bambusuril macrocycle that binds anions in water with high affinity and selectivity. Angew. Chem. Int. Ed. 54, 276–279 (2015).

    Article  CAS  Google Scholar 

  37. Davis, A. P., Sheppard, D. N. & Smith, B. D. Development of synthetic membrane transporters for anions. Chem. Soc. Rev. 36, 348–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Gokel, G. W. & Negin, S. Synthetic ion channels: from pores to biological applications. Acc. Chem. Res. 46, 2824–2833 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Tomich, M., Bukovnik, U., Layman, J. & Schultz, B. D. Channel replacement therapy for cystic fibrosis. in Cystic Fibrosis - Renewed Hopes through Research (ed Sriramulu, D.) 291–332 (InTech, 2012).

  40. Valkenier et al. Lipophilic balance – a new design principle for transmembrane anion carriers. Chem. Sci. 5, 1128–1134 (2014).

    Article  CAS  Google Scholar 

  41. Sakai, N. & Matile, S. The determination of the ion selectivity of synthetic ion channels and pores in vesicles. J. Phys. Org. Chem. 19, 452–460 (2006).

    Article  CAS  Google Scholar 

  42. Shen, Y. et al. Ultrasensitive liposome-based assay for the quantification of fundamental ion channel properties. Anal. Chim. Acta 1112, 8–15 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Matsui, H. et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 5, 1005–1015 (1998).

    Article  Google Scholar 

  44. Jentzsch, A. V. et al. Transmembrane anion transport mediated by halogen-bond donors. Nat. Commun. 3, 905 (2012).

    Article  PubMed  Google Scholar 

  45. Rychkov, G. Y., Pusch, M., Roberts, M. L., Jentsch, T. J. & Bretag, A. H. Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions. J. Gen. Physiol. 111, 653–665 (1991).

    Article  Google Scholar 

  46. Biwersi, J., Tulk, B. & Verkman, A. S. Long-wavelength chloride-sensitive fluorescent indicators. Anal. Biochem. 219, 139–143 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Seganish, J. L., Fettinger, J. C. & Davis, J. T. Facilitated chloride transport across phosphatidylcholine bilayers by an acyclic calixarene derivative: structure-function relationships. Supramol. Chem. 18, 257–264 (2006).

    Article  CAS  Google Scholar 

  48. Kunz, W., Nostro, P. L. & Ninham, B. W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. 9, 1–18 (2004).

    Article  CAS  Google Scholar 

  49. Behera, H. & Madhavan, N. Anion-selective cholesterol decorated macrocyclic transmembrane ion carriers. J. Am. Chem. Soc. 139, 12919–12922 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Behr, J.-P., Kirch, M. & Lehn, J.-M. Carrier-mediated transport through bulk liquid membranes: dependence of transport rates and selectivity on carrier properties in a diffusion-limited process. J. Am. Chem. Soc. 107, 241–246 (1985).

    Article  CAS  Google Scholar 

  51. Jentsch, T. J., Maritzen, T. & Zdebik, A. A. Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. J. Clin. Invest. 115, 2039–2046 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haq, I. J., Gray, M. A., Garnett, J. P., Ward, C. & Brodlie, M. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets. Thorax 71, 284–287 (2016).

    Article  PubMed  Google Scholar 

  53. Alikadic, S. et al. Ciliary beat frequency in nasal and bronchial epithelial cells in patients with cystic fibrosis. Eur. Respir. J. 38, 4550 (2011).

    Google Scholar 

  54. Anderson, W. H. et al. The relationship of mucus concentration (hydration) to mucus osmotic pressure and transport in chronic bronchitis. Am. J. Respir. Crit. Care Med. 192, 182–190 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Goralski, J. L., Wu, D., Thelin, W. R., Boucher, R. C. & Button, B. The in vitro effect of nebulised hypertonic saline on human bronchial epithelium. Eur. Respir. J. 51, 1702652 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Muraglia, K. A. et al. Small-molecule ion channels increase host defences in cystic fibrosis airway epithelia. Nature 567, 405–408 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Article  Google Scholar 

  58. Liu, Z. H., Ma, Q. Q., Liu, Y. X. & Wang, Q. M. 4-(N,N-Dimethylamino)pyridine hydrochloride as a recyclable catalyst for acylation of inert alcohols: substrate scope and reaction mechanism. Org. Lett. 16, 236–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, Z. G. et al. Efficient synthesis of cyclic carnonates from atmospheric CO2 using a positive charge delocalized ionic liquid catalyst. ACS Sustain. Chem. Eng. 5, 2841–2846 (2017).

    Article  CAS  Google Scholar 

  60. Cao, R. et al. Aromatic pentaamide macrocycles bind anions with high-affinity for transport across biomembranes. Figshare https://doi.org/10.6084/m9.figshare.23302427 (2023).

  61. Gong, B. Linear and cyclic aromatic oligoamides, methods of making same and uses thereof. US patent PCT/US2021/050041 (2021).

Download references

Acknowledgements

We acknowledge support from the US National Science Foundation (CHE-2304878 to B.G. for the conceptualization, design, data collection, analysis, decision to publish or preparation of the manuscript; CHE-1905094 and 2108538 to B.G. for preparing some of the synthetic building blocks; and CHE-2108597 to D.P.M. for the computational studies) for financial support; the Cystic Fibrosis Foundation (BUTTON19G0) and the NIH (R01HL125280) to B.B. for assessing the effect of c5a on restoring the ASL of cultured CF cells; the National Key R&D Program of China (2020YFA0908100), the NSFC (81627801) and the K. C. Wong Education Foundation (Hong Kong) to Z.S. for the design and performance of experiments on anion transport, for the determination of transport selectivity and for the preparation of the manuscript; and the Rabinowitz Honors College Research Assistant Program and a Lister Endowed Fellowship from Hofstra University (to D.P.M.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Computations were carried out at the Center for Computational Research at the University at Buffalo (http://hdl.handle.net/10477/79221).

Author information

Authors and Affiliations

Authors

Contributions

R.C. and R.B.R. designed and conducted the syntheses and also performed the binding studies. T.A.S. performed ITC experiments. Y.S., Y.Z., R.B.R. and Z.S. performed the vesicle-based assays on anion transport. X.W. processed the X-ray data. D.P.M., L.S.B., K.R. and E.Z. performed the computational studies. B.B designed and, along with M.I.G. and M.F.F., performed experiments on cystic fibrosis cell cultures. T.S. helped with the NMR experiments. B.G. conceived and supervised the project. Z.S. and B.G. co-wrote the paper. All authors participated in discussion and editing of the manuscript.

Corresponding authors

Correspondence to Zhifeng Shao or Bing Gong.

Ethics declarations

Competing interests

A provisional US patent application (PCT/US2021/050041) regarding the synthesis, anion binding, anion transport and potential therapeutic uses involving macrocycles c5 has been filed61. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Maija Nissinen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Table 1, synthetic procedures, additional NMR and mass spectrometry spectra, descriptions of anion transport, cell culture and imaging and computational studies.

Reporting Summary

Supplementary Data 1

Crystallographic data for compound c5c; CCDC reference 2124841.

Supplementary Data 2

Crystallographic data for compound c5a, including cif file, checkcif file, structural factors and justification for A- and B-level alerts.

Supplementary Data 3

The xyz coordinates of computed structures.

Source data

Source Data Fig. 2

UV and NMR titration data of c5a with Cl for Fig. 2a,b.

Source Data Fig. 3

Values of binding constants of c5a with different anions versus the diameter of the corresponding anions for Fig. 3c.

Source Data Fig. 4

The numerical values of data for halide ion transport by vesicle assay with and without c5a for Fig. 4b–d.

Source Data Fig. 5

The numerical values of the thickness of the ASL layers of control and treated (with c5a) CF cells for Fig. 5c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, R., Rossdeutcher, R.B., Zhong, Y. et al. Aromatic pentaamide macrocycles bind anions with high affinity for transport across biomembranes. Nat. Chem. 15, 1559–1568 (2023). https://doi.org/10.1038/s41557-023-01315-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01315-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing