Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-cell multimodal imaging uncovers energy conversion pathways in biohybrids

Abstract

Microbe–semiconductor biohybrids, which integrate microbial enzymatic synthesis with the light-harvesting capabilities of inorganic semiconductors, have emerged as promising solar-to-chemical conversion systems. Improving the electron transport at the nano–bio interface and inside cells is important for boosting conversion efficiencies, yet the underlying mechanism is challenging to study by bulk measurements owing to the heterogeneities of both constituents. Here we develop a generalizable, quantitative multimodal microscopy platform that combines multi-channel optical imaging and photocurrent mapping to probe such biohybrids down to single- to sub-cell/particle levels. We uncover and differentiate the critical roles of different hydrogenases in the lithoautotrophic bacterium Ralstonia eutropha for bioplastic formation, discover this bacterium’s surprisingly large nanoampere-level electron-uptake capability, and dissect the cross-membrane electron-transport pathways. This imaging platform, and the associated analytical framework, can uncover electron-transport mechanisms in various types of biohybrid, and potentially offers a means to use and engineer R. eutropha for efficient chemical production coupled with photocatalytic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbe–semiconductor biohybrids and multimodal imaging platform.
Fig. 2: Roles of hydrogenases in bioplastic formation under lithoautotrophic growth.
Fig. 3: Electron uptake of R. eutropha from photoelectrodes in integrated biohybrids.
Fig. 4: Schematics of dominant electron-transport pathways for bioplastic formation in biohybrid systems.
Fig. 5: Players in electron transport across the microbe–semiconductor interface.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. Raw data supporting the findings of this study are available upon reasonable request. Source data are provided with this paper.

Code availability

MATLAB codes for data analysis and simulations supporting the findings of this study are provided with this paper.

References

  1. Cestellos-Blanco, S., Zhang, H., Kim, J. M., Shen, Y. X. & Yang, P. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 3, 245–255 (2020).

    Article  CAS  Google Scholar 

  2. Rabaey, K. & Rozendal, R. A. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Kracke, F., Vassilev, I. & Krömer, J. O. Microbial electron transport and energy conservation—the foundation for optimizing bioelectrochemical systems. Front. Microbiol. 6, 575 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kornienko, N., Zhang, J. Z., Sakimoto, K. K., Yang, P. & Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Dogutan, D. K. & Nocera, D. G. Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc. Chem. Res. 52, 3143–3148 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Nangle, S. N., Sakimoto, K. K., Silver, P. A. & Nocera, D. G. Biological-inorganic hybrid systems as a generalized platform for chemical production. Curr. Opin. Chem. Biol. 41, 107–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Nichols, E. M. et al. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc. Natl Acad. Sci. USA 112, 11461–11466 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, C. et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sakimoto, K. K., Wong Andrew, B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, B., Jiang, Z., Yu, J. C., Wang, J. & Wong, P. K. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale 11, 9296–9301 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Guo, J. et al. Light-driven fine chemical production in yeast biohybrids. Science 362, 813–816 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kornienko, N. et al. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production. Proc. Natl Acad. Sci. USA 113, 11750–11755 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brown Katherine, A. et al. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science 352, 448–450 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Dong, F., Lee, Y. S., Gaffney, E. M., Liou, W. & Minteer, S. D. Engineering cyanobacterium with transmembrane electron transfer ability for bioelectrochemical nitrogen fixation. ACS Catal. 11, 13169–13179 (2021).

    Article  CAS  Google Scholar 

  16. Knoche, K. L., Aoyama, E., Hasan, K. & Minteer, S. D. Role of nitrogenase and ferredoxin in the mechanism of bioelectrocatalytic nitrogen fixation by the cyanobacteria Anabaena variabilis SA-1 mutant immobilized on indium tin oxide (ITO) electrodes. Electrochim. Acta 232, 396–403 (2017).

    Article  CAS  Google Scholar 

  17. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Debroye, E. et al. Facet-dependent photoreduction on single ZnO crystals. J. Phys. Chem. Lett. 8, 340–346 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Mao, X. & Chen, P. Inter-facet junction effects on particulate photoelectrodes. Nat. Mater. 21, 331–337 (2021).

    Article  PubMed  Google Scholar 

  20. Reinecke, F. & Steinbüchel, A. Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J. Mol. Microbiol. Biotechnol. 16, 91–108 (2009).

    CAS  PubMed  Google Scholar 

  21. Burgdorf, T. et al. [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J. Mol. Microbiol. Biotechnol. 10, 181–196 (2005).

    CAS  PubMed  Google Scholar 

  22. Pohlmann, A. et al. Genome sequence of the bioplastic-producing ‘Knallgas’ bacterium Ralstonia eutropha H16. Nat. Biotechnol. 24, 1257–1262 (2006).

    Article  PubMed  Google Scholar 

  23. Cramm, R. Genomic view of energy metabolism in Ralstonia eutropha H16. J. Mol. Microbiol. Biotechnol. 16, 38–52 (2009).

    CAS  PubMed  Google Scholar 

  24. Pötter, M. et al. The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology 150, 2301–2311 (2004).

    Article  PubMed  Google Scholar 

  25. Peoples, O. P. & Sinskey, A. J. Poly-P-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. J. Biol. Chem. 264, 15298–15303 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Bresan, S. et al. Polyhydroxyalkanoate (PHA) granules have no phospholipids. Sci. Rep. 6, 26612 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. York, G. M., Junker, B. H., Stubbe, J. & Sinskey, A. J. Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. J. Bacteriol. 183, 4217–4226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu, B. et al. Metal-induced sensor mobilization turns on affinity to activate regulator for metal detoxification in live bacteria. Proc. Natl Acad. Sci. USA 117, 13248–13255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mullineaux, C. W., Nenninger, A., Ray, N. & Robinson, C. Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J. Bacteriol. 188, 3442–3448 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deutzmann, J. S., Sahin, M., Spormann, A. M. & Harwood, C. S. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6, e00496–00415 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kohlmann, Y. et al. Analyses of soluble and membrane proteomes of Ralstonia eutropha H16 reveal major changes in the protein complement in adaptation to lithoautotrophy. J. Proteome Res. 10, 2767–2776 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Friedrich, B., Buhrke, T., Burgdorf, T. & Lenz, O. A hydrogen-sensing multiprotein complex controls aerobic hydrogen metabolism in Ralstonia eutropha. Biochem. Soc. Trans. 33, 97–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Aslan, E. et al. Photocatalytic H2 evolution with a Cu2WS4 catalyst on a metal free D-π-A organic dye-sensitized TiO2. Appl. Catal. B 210, 320–327 (2017).

    Article  CAS  Google Scholar 

  34. Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    Article  CAS  Google Scholar 

  35. Nasir, J. A. et al. Recent developments and perspectives in CdS-based photocatalysts for water splitting. J. Mater. Chem. A 8, 20752–20780 (2020).

    Article  CAS  Google Scholar 

  36. Lanni, E. J. et al. Correlated imaging with C60-SIMS and confocal Raman microscopy: visualization of cell-scale molecular distributions in bacterial biofilms. Anal. Chem. 86, 10885–10891 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chadwick, G. L., Jiménez, O. F., Gralnick, J. A., Bond, D. R. & Orphan, V. J. NanoSIMS imaging reveals metabolic stratification within current-producing biofilms. Proc. Natl Acad. Sci. USA 116, 20716–20724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saggu, M. et al. Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16. J. Biol. Chem. 284, 16264–16276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Edwards, R. A., Keller, L. H. & Schifferli, D. M. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207, 149–157 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Torella, J. P. et al. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc. Natl Acad. Sci. USA 112, 2337–2342 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, T.-Y. et al. Concentration- and chromosome-organization-dependent regulator unbinding from DNA for transcription regulation in living cells. Nat. Commun. 6, 7445 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by the US Department of Energy (Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division, under award no. DE-SC0020179). It uses Cornell Center for Materials Research Shared Facilities supported through the NSF MRSEC programme (DMR-1719875). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank C. Brigham at Wentworth Institute of Technology for providing the R. eutropha H16 strain, W. Metcalf at the University of Illinois at Urbana Champaign for E. coli WM3064, O. Lenz at Technische Universität Berlin for R. eutropha ΔhoxH, L. Krzeminski formerly at Cornell University for constructing tagged E. coli strains, and S. Murphy, T. Doerr and A. Schmitz at Cornell University for discussions on genetics.

Author information

Authors and Affiliations

Authors

Contributions

B.F. constructed strains. X.M. synthesized semiconductor materials. B.F. and X.M. designed experiments, performed measurements, wrote codes and analysed data. Y.P., Z.Z. and T.Y. contributed to strain construction, materials synthesis and/or imaging experiments, where Y.P. and Z.Z. contributed equally. W.J. and D.H.F. contributed to cell culturing. W.L. helped with instrument set-up. B.P., F.S. and B.B. contributed to genetic engineering. M.S. and T.H. contributed to discussions on materials synthesis. P.C. conceived and directed the research. B.F., X.M. and P.C. wrote the manuscript.

Corresponding author

Correspondence to Peng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, sections 1–13, Tables 1–6 and references 42–74.

Reporting Summary

Supplementary Code 1

MATLAB codes for data analysis and simulations supporting the findings of this study.

Supplementary Table 1

List of primers used in manuscript.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, B., Mao, X., Park, Y. et al. Single-cell multimodal imaging uncovers energy conversion pathways in biohybrids. Nat. Chem. 15, 1400–1407 (2023). https://doi.org/10.1038/s41557-023-01285-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01285-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research