Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Time-resolved imaging and analysis of the electron beam-induced formation of an open-cage metallo-azafullerene

Abstract

The visualization of single-molecule reactions provides crucial insights into chemical processes, and the ability to do so has grown with the advances in high-resolution transmission electron microscopy. There is currently a limited mechanistic understanding of chemical reactions under the electron beam. However, such reactions may enable synthetic methodologies that cannot be accessed by traditional organic chemistry methods. Here we demonstrate the synthetic use of the electron beam, by in-depth single-molecule, atomic-resolution, time-resolved transmission electron microscopy studies, in inducing the formation of a doubly holed fullerene-porphyrin cage structure from a well-defined benzoporphyrin precursor deposited on graphene. Through real-time imaging, we analyse the hybrid’s ability to host up to two Pb atoms, and subsequently probe the dynamics of the Pb–Pb binding motif in this exotic metallo-organic cage structure. Through simulation, we conclude that the secondary electrons, which accumulate in the periphery of the irradiated area, can also initiate chemical reactions. Consequently, designing advanced carbon nanostructures by electron-beam lithography will depend on the understanding and limitations of molecular radiation chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental and computational approach to fullerophyrin FP.
Fig. 2: Electron microscopy analysis of the overall environment of the starting FP.
Fig. 3: Mechanistic insights into beam-induced processes.
Fig. 4: SMART-EM analysis of FP formation.
Fig. 5: Summary of events and electronic characteristics of fullerophyrins.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Nakamura, E. Atomic-resolution transmission electron microscopic movies for study of organic molecules, assemblies and reactions: the first 10 years of development. Acc. Chem. Res. 50, 1281–1292 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Skowron, S. T. et al. Chemical reactions of molecules promoted and simultaneously imaged by the electron beam in transmission electron microscopy. Acc. Chem. Res. 50, 1797–1807 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Nakamuro, T., Sakakibara, M., Nada, H., Harano, K. & Nakamura, E. Capturing the moment of emergence of crystal nucleus from disorder. J. Am. Chem. Soc. 143, 1763–1767 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Xing, J., Schweighauser, L., Okada, S., Harano, K. & Nakamura, E. Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses. Nat. Commun. 10, 3608 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nakamuro, T. et al. Time-resolved atomistic imaging and statistical analysis of daptomycin oligomers with and without calcium ions. J. Am. Chem. Soc. 144, 13612–13622 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Biskupek, J. et al. Bond dissociation and reactivity of HF and H2O in a nano test tube. ACS Nano 14, 11178–11189 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Cao, K. et al. Imaging an unsupported metal-metal bond in dirhenium molecules at the atomic scale. Sci. Adv. 6, eaay5849 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jordan, J. W. et al. Single-molecule imaging and kinetic analysis of intermolecular polyoxometalate reactions. Chem. Sci. 12, 7377–7387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao, K. et al. Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube. Nat. Chem. 12, 921–928 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Kharel, P. et al. Atomic-resolution imaging of small organic molecules on graphene. Nano Lett. 22, 3628–3635 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Mirzayev, R. et al. Buckyball sandwiches. Sci. Adv. 3, e1700176 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Choe, J. et al. Direct imaging of structural disordering and heterogeneous dynamics of fullerene molecular liquid. Nat. Commun. 10, 4395 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Susi, T., Meyer, J. C. & Kotakoski, J. Quantifying transmission electron microscopy irradiation effects using two-dimensional materials. Nat. Rev. Phys. 1, 397–405 (2019).

    Article  Google Scholar 

  14. Cai, Z., Chen, S. & Wang, L.-W. Dissociation path competition of radiolysis ionization-induced molecule damage under electron beam illumination. Chem. Sci. 10, 10706–10715 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Egerton, R. F. Radiation damage to organic and inorganic specimens in the TEM. Micron 119, 72–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, D. et al. Ionization and electron excitation of C60 in a carbon nanotube: a variable temperature/voltage transmission electron microscopic study. Proc. Natl Acad. Sci. USA 119, e2200290119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chamberlain, T. W. et al. Isotope substitution extends the lifetime of organic molecules in transmission electron microscopy. Small 11, 622–629 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Okada, S. et al. Direct microscopic analysis of individual C60 dimerization events: kinetics and mechanisms. J. Am. Chem. Soc. 139, 18281–18287 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Shimizu, T., Lungerich, D., Harano, K. & Nakamura, E. Time-resolved imaging of stochastic cascade reactions over a submillisecond to second time range at the angstrom level. J. Am. Chem. Soc. 144, 9797–9805 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Lungerich, D. et al. A singular molecule-to-molecule transformation on video: the bottom-up synthesis of fullerene C60 from truxene derivative C60H30. ACS Nano 15, 12804–12814 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Scott, L. T. et al. A rational chemical synthesis of C60. Science 295, 1500–1503 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Boorum, M. M., Vasil’ev, Y. V., Drewello, T. & Scott, L. T. Groundwork for a rational synthesis of C60: cyclodehydrogenation of a C60H30 polyarene. Science 294, 828–831 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N. A. & Khlobystov, A. N. Direct transformation of graphene to fullerene. Nat. Chem. 2, 450–453 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Cao, K. et al. Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts. Nat. Commun. 9, 3382 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lungerich, D. et al. Gas‐phase transformation of fluorinated benzoporphyrins to porphyrin‐embedded conical nanocarbons. Chem. Eur. J. 26, 12180–12187 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Xie, W. & Schlücker, S. Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 6, 7570 (2015).

    Article  PubMed  Google Scholar 

  27. Kim, M., Lin, M., Son, J., Xu, H. & Nam, J. Hot‐electron‐mediated photochemical reactions: principles, recent advances and challenges. Adv. Opt. Mater. 5, 1700004 (2017).

    Article  Google Scholar 

  28. Brydson, R. Electron Energy Loss Spectroscopy (Taylor & Francis, 2001); https://doi.org/10.1201/9781003076858-1

  29. Kumar, M., Neta, P., Sutter, T. P. G. & Hambright, P. One-electron reduction and demetallation of copper porphyrins. J. Phys. Chem. 96, 9571–9575 (1992).

    Article  CAS  Google Scholar 

  30. Cowan, J. A. & Sanders, J. K. M. Reductive demetallation of porphyrins: evidence for peripheral and axial modes of reduction. Tetrahedron Lett. 27, 1201–1204 (1986).

    Article  CAS  Google Scholar 

  31. Russo, C. J. & Henderson, R. Charge accumulation in electron cryomicroscopy. Ultramicroscopy 187, 43–49 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Downing, K. H., McCartney, M. R. & Glaeser, R. M. Experimental characterization and mitigation of specimen charging on thin films with one conducting layer. Microsc. Microanal. 10, 783–789 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Brink, J., Sherman, M. B., Berriman, J. & Chiu, W. Evaluation of charging on macromolecules in electron cryomicroscopy. Ultramicroscopy 72, 41–52 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Kuei, B. & Gomez, E. D. Pushing the limits of high-resolution polymer microscopy using antioxidants. Nat. Commun. 12, 153 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gonzalez-Martinez, I. G. et al. Electron-beam induced synthesis of nanostructures: a review. Nanoscale 8, 11340–11362 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Xing, J. et al. Atomic-number (Z)-correlated atomic sizes for deciphering electron microscopic molecular images. Proc. Natl Acad. Sci. USA 119, e2114432119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, Y., Quillian, B., Wei, P., Yang, X.-J. & Robinson, G. H. New Pb-Pb bonds: syntheses and molecular structures of hexabiphenyldiplumbane and tri(trisbiphenylplumbyl)plumbate. Chem. Commun. 0, 2224–2225 (2004).

    Article  CAS  Google Scholar 

  38. Popov, A. A., Yang, S. & Dunsch, L. Endohedral fullerenes. Chem. Rev. 113, 5989–6113 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Nakamura, E. Bucky ferrocene and ruthenocene: serendipity and discoveries. J. Organomet. Chem. 689, 4630–4635 (2004).

    Article  CAS  Google Scholar 

  40. Kawahara, K. P., Matsuoka, W., Ito, H. & Itami, K. Synthesis of nitrogen‐containing polyaromatics by aza‐annulative π‐extension of unfunctionalized aromatics. Angew. Chem. Int. Ed. 59, 6383–6388 (2020).

    Article  CAS  Google Scholar 

  41. Wang, C., Sun, Q., García, F., Wang, C. & Yoshikai, N. Robust cobalt catalyst for nitrile/alkyne [2 + 2 + 2] cycloaddition: synthesis of polyarylpyridines and their mechanochemical cyclodehydrogenation to nitrogen‐containing polyaromatics. Angew. Chem. Int. Ed. 60, 9627–9634 (2021).

    Article  CAS  Google Scholar 

  42. Rickhaus, M., Belanger, A. P., Wegner, H. A. & Scott, L. T. An oxidation induced by potassium metal. Studies on the anionic cyclodehydrogenation of 1,1′-binaphthyl to perylene. J. Org. Chem. 75, 7358–7364 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, Y.-K., Santos, J. P. & Parente, F. Extension of the binary-encounter-dipole model to relativistic incident electrons. Phys. Rev. A 62, 052710 (2000).

    Article  Google Scholar 

  44. Stevenson, S. et al. Semiconducting and metallic [5,5] fullertube nanowires: characterization of pristine D5h(1)-C90 and D5d(1)-C100. J. Am. Chem. Soc. 143, 4593–4599 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Hirsch, A. & Brettreich, M. Fullerenes (Wiley, 2005).

  46. Kinchin, G. H. & Pease, R. S. The displacement of atoms in solids by radiation. Rep. Prog. Phys. 18, 1 (1955).

    Article  Google Scholar 

  47. Egerton, R. Radiation damage and nanofabrication in TEM and STEM. Microsc. Today 29, 56–59 (2021).

    Article  CAS  Google Scholar 

  48. Hölzel, H. Hybrid Architectures Based on Carbon-Rich Pi-Systems and Porphyrins (Friedrich-Alexander Univ., 2021).

  49. Ruppel, M. et al. A comprehensive study on tetraaryltetrabenzoporphyrins. Chem. Eur. J. 26, 3287–3296 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Ruppel, M., Gazetas, L.-P., Lungerich, D., Hampel, F. & Jux, N. Investigations of low-symmetrical tetraaryltetrabenzoporphyrins produced by mixed condensation reactions. J. Org. Chem. 85, 7781–7792 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Ruppel, M., Gazetas, L.-P., Lungerich, D. & Jux, N. Synthesis and photophysical properties of hexabenzocoronene-tetrabenzoporphyrin architectures. Eur. J. Org. Chem. 2020, 6352–6360 (2020).

    Article  CAS  Google Scholar 

  52. Crawford, A. G. et al. Synthesis of 2‐ and 2,7‐functionalized pyrene derivatives: an application of selective C-H borylation. Chem. Eur. J. 18, 5022–5035 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Algara-Siller, G., Lehtinen, O., Turchanin, A. & Kaiser, U. Dry-cleaning of graphene. Appl. Phys. Lett. 104, 153115 (2014).

    Article  Google Scholar 

  54. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hosokawa, F., Shinkawa, T., Arai, Y. & Sannomiya, T. Benchmark test of accelerated multi-slice simulation by GPGPU. Ultramicroscopy 158, 56–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).

    Article  CAS  Google Scholar 

  57. Shao, Y. et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8, 3172–3191 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  60. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Institute for Basic Science IBS-R026-Y1 (D.L.). K.H. and E.N. acknowledge support from JSPS KAKENHI JP19H05459. K.H. acknowledges support from Japan Science and Technology Agency (CREST JPMJCR20B2). N.J. and K.A. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG, Projektnummer 1828491499, SFB 953). H.H. and D.L. acknowledge support as International Research Fellows from the Japan Society for the Promotion of Science (JSPS). H.H. further thanks the Bavarian Equal Opportunities Sponsorship, Realisierung von Chancengleichheit von Frauen in Forschung und Lehre (FFL), Realization Equal Opportunities for Women in Research and Teaching, for financial support. D.L. thanks the Alexander von Humboldt Foundation for a Feodor–Lynen return fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D.L. conceptualized the project and wrote the manuscript with feedback from all authors. All authors discussed the results and commented on the manuscript. N.J. and K.Y.A. designed the molecules. H.H. synthesized and characterized the molecules. H.H. and D.L. carried out the TEM experiments. S.L. carried out the STEM/EDS experiments and analysis. D.L. carried out SMART-EM data analysis, DFT calculations and EM simulations. D.L., K.H. and E.N. provided access and maintenance of the TEM. E.N., N.J. and D.L. were responsible for funding acquisition. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Dominik Lungerich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Nazario Martin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Thermochemical comparison of the cyclodehydrogenation reaction of C60H30 to C60 and 1 to FP.

a, Reaction equation for the C60H30 to C60 conversion. b, Relative energies of intermediates for each reaction. c, Energy difference between each reaction intermediate. (DFT: M06-2X/def2-TZVP).

Source data

Extended Data Fig. 2 Characterization of 1M (M = Pt, Pd, Ni) species.

a, UV/Vis analysis in THF at r.t. Spectra are normalized at the absorption maximum of pyrene at 341 nm. b, TEM image of Pt, Pd, and Ni-atom aggregates. c, Low-mag TEM image of single metal atoms from 1M species. d, Time–dependent diffusion of single Pt-atoms. e, Time-dependent diffusion of single Pd-atoms. Arrows indicate the direction of motion.

Source data

Extended Data Fig. 3 Alternative simulations with an outside bound Pb atom instead of an endohedral metal atom.

The surface of the molecule displays the van der Waals surface. In the side view, the graphene is depicted as a CPK model. Scale bar 1 nm.

Extended Data Fig. 4 Simulation analysis of Pb-Pb distance in Pb@(FP-Pb) at various tilting angles.

The measured angle is derived from the static graphene surface and the tilted molecule along the Pb-Pb bond. a, Pb-Pb single bond. b, non-bonded Pb atoms. Scale bar 1 nm.

Extended Data Fig. 5 Secondary knock-on-induced demetallation of complexed Pb atoms through a fast atom flux.

a, Schematic depiction of energy transfer ET from primary electrons to atoms (H, C, N, Pb) and subsequent energy transfer ET’ from the fast moving atoms to Pb atoms, calculated from Eq. 1 and 2. b, Maximum transferred kinetic energy from the primary beam via elastic scattering against the kinetic energy of the primary electrons. c, Maximum transferred kinetic energy from fast atoms to Pb atoms via secondary knock-on energy transfer against the kinetic energy of the primary electrons.

Source data

Extended Data Fig. 6 Additional simulation images of Pb@(FP-Pb) with graphene’s most significant van der Waals surface interactions.

Scale bar 1 nm.

Extended Data Fig. 7 Electronic evaluation of different Pb-, Ge-, and Zn-fullerophyrins.

a, Electrostatic potential map of FP, (FP-M), M@(FP), and M@(FP-M) (color range from −50 to +30 kJ/mol, isovalue 0.002 e/au3 b, Sliced contour plot of the ionization potential of FP, (FP-M), M@(FP), and M@(FP-M) (color range from 7 to 15 eV). Digits indicate natural atomic charge of metal atoms. DFT level: B3LYP-D3/6-311G(2d,p)// ωB97X-D/6-31G(d) for Zn and Ge derivatives, B3LYP-D3/6-31G(d)/LANL2DZ>Kr for Pb-derivatives.

Extended Data Table 1 Expected knock-on-induced events of 1

Supplementary information

Supplementary Information

Captions for Supplementary Videos 1–3, synthetic details, description of cross-section calculation, computational details, XYZ coordinates, NMR and MS spectral appendix, text, Figs. 1–36, Tables 1–19 and references.

Supplementary Video 1

Transformation of 1Pb to Pb@(FP-Pb) and Pb@(FP) on graphene. 80 kV, magnification 1,000,000x, texp = 500 ms, drift corrected, bandpass filtered, and contrast corrected. Video displayed at 6 f.p.s., 1-86-frames. The video displays the motion three times faster than the actual recording.

Supplementary Video 2

Decomposition of Pb@(FP) under the electron beam. 80 kV, magnification 1,000,000x, texp = 500 ms, drift corrected, bandpass filtered, and contrast corrected. Video displayed at 12 f.p.s., 87–200 frames. The video displays the motion six times faster than the actual recording.

Supplementary Video 3

Detachment of empty hemi-FP from graphene monolayer. 80 kV, magnification 2,000,000x, texp = 500 ms, drift corrected, bandpass filtered, and contrast corrected. Video displayed at 10 f.p.s., 1–140 frames. The video displays the motion five times faster than the actual recording.

Source data

Source Data Fig. 1

UV–vis spectra, DFT thermochemical calculations.

Source Data Fig. 2

EDS spectrum.

Source Data Fig. 3

Source data Fig. 3.

Source Data Fig. 4

Measured distances and statistical data.

Source Data Fig. 5

Analysis of events; knock-on and ionization cross-sections.

Source Data Extended Data Fig./Table 1

DFT thermochemical calculations.

Source Data Extended Data Fig./Table 2

UV–vis spectra.

Source Data Extended Data Fig./Table 5

Atom flux knock-on energy transfer.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoelzel, H., Lee, S., Amsharov, K.Y. et al. Time-resolved imaging and analysis of the electron beam-induced formation of an open-cage metallo-azafullerene. Nat. Chem. 15, 1444–1451 (2023). https://doi.org/10.1038/s41557-023-01261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01261-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing