Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Energy-transfer-induced [3+2] cycloadditions of N–N pyridinium ylides

Abstract

Photocycloaddition is a powerful reaction to enable the conversion of alkenes into high-value synthetic materials that are normally difficult to obtain under thermal conditions. Lactams and pyridines, both prominent in pharmaceutical applications, currently lack effective synthetic strategies to combine them within a single molecular structure. Here we describe an efficient approach to diastereoselective pyridyl lactamization via a photoinduced [3+2] cycloaddition, based on the unique triplet-state reactivity of N–N pyridinium ylides in the presence of a photosensitizer. The corresponding triplet diradical intermediates allow the stepwise radical [3+2] cycloaddition with a broad range of activated and unactivated alkenes under mild conditions. This method exhibits excellent efficiency, diastereoselectivity and functional group tolerance, providing a useful synthon for ortho-pyridyl γ- and δ-lactam scaffolds with syn-configuration in a single step. Combined experimental and computational studies reveal that the energy transfer process leads to a triplet-state diradical of N–N pyridinium ylides, which promotes the stepwise cycloaddition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design plan for EnT-driven [3+2] cycloadditions of N–N pyridinium ylides.
Fig. 2: Development of [3+2] cycloadditions of N–N pyridinium ylides via EnT-induced pathway.
Fig. 3: Mechanistic investigations.
Fig. 4: The proposed reaction mechanism and calculated energy diagram.

Similar content being viewed by others

Data availability

Experimental procedure and characterization data of new compounds are available within Supplementary Information. Computational details, optimized Cartesian coordinates of all structures, vibrational frequencies and energy components are also available within Supplementary Information. Crystallographic data for the structures reported in this paper have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2214977 (2a), 2214980 (2y) and 2214981 (4n). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Zard, S. Z. Recent progress in the generation and use of nitrogen-centred radicals. Chem. Soc. Rev. 37, 1603–1618 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Yu, X.-Y., Zhao, Q.-Q., Chen, J., Xiao, W.-J. & Chen, J.-R. When light meets nitrogen-centered radicals: from reagents to catalysts. Acc. Chem. Res. 53, 1066–1083 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Ganley, J. M., Murray, P. R. D. & Knowles, R. R. Photocatalytic generation of aminium radical cations for C–N bond formation. ACS Catal. 10, 11712–11738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chinn, A. J., Sedillo, K. & Doyle, A. G. Phosphine/photoredox catalyzed anti-Markovnikov hydroamination of olefins with primary sulfonamides via α-scission from phosphoranyl radicals. J. Am. Chem. Soc. 143, 18331–18338 (2021).

  5. Roos, C. B., Demaerel, J., Graff, D. E. & Knowles, R. R. Enantioselective hydroamination of alkenes with sulfonamides enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 142, 5974–5979 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Allen, L. J., Cabrera, P. J., Lee, M. & Sanford, M. S. N-acyloxyphthalimides as nitrogen radical precursors in the visible-light-photocatalyzed room temperature C–H amination of arenes and heteroarenes. J. Am. Chem. Soc. 136, 5607–5610 (2014).

  7. Greulich, T. W., Daniliuc, C. G. & Studer, A. N-aminopyridinium salts as precursors for N-centered radicals–direct amidation of arenes and heteroarenes. Org. Lett. 17, 254–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Jiang, H. & Studer, A. Amidyl radicals by oxidation of α-amido-oxy acids: transition metal-free amidofluorination of unactivated alkenes. Angew. Chem. Int. Ed. 57, 10707–10711 (2018).

  9. Moon, Y. et al. Visible-light-induced alkene aminopyridylation using N-aminopyridinium salts as bifunctional reagents. Nat. Commun. 10, 4117 (2019).

  10. Kim, N., Lee, C., Kim, T. & Hong, S. Visible-light-induced remote C(sp3)–H pyridylation of sulfonamides and carboxamides. Org. Lett. 21, 9719–9723 (2019).

  11. Dauncey, E. M., Morcillo, S. P., Douglas, J. J., Sheikh, N. S. & Leonori, D. Photoinduced remote functionalisations by iminyl radical promoted C–C and C–H bond cleavage cascades. Angew. Chem. Int. Ed. 130, 752–756 (2018).

    Article  Google Scholar 

  12. Ren, X. et al. Visible-light-promoted diastereodivergent intramolecular oxyamidation of alkenes. Chem. Eur. J. 22, 18695–18699 (2016).

  13. Guo, Q., Ren, X. & Lu, Z. Controllable intramolecular unactivated C(sp3)–H amination and oxygenation of carbamates. Org. Lett. 21, 880–884 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Caruano, J., Muccioli, G. G. & Robiette, R. Biologically active γ-lactams: synthesis and natural sources. Org. Biomol. Chem. 14, 10134–10156 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Davies, J., Svejstrup, T. D., Fernandez Reina, D., Sheikh, N. S. & Leonori, D. Visible-light-mediated synthesis of amidyl radicals: transition metal-free hydroamination and N-arylation reactions. J. Am. Chem. Soc. 138, 8092–8095 (2016).

  16. Noten, E. A., McAtee, R. C. & Stephenson, C. R. J. Catalytic intramolecular aminoarylation of unactivated alkenes with aryl sulfonamides. Chem. Sci. 13, 6942–6949 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

  18. Strieth-Kalthoff, F. & Glorius, F. Triplet energy transfer photocatalysis: unlocking the next level. Chem 6, 1888–1903 (2020).

    Article  CAS  Google Scholar 

  19. Huang, X. et al. Direct visible-light-excited asymmetric Lewis acid catalysis of intermolecular [2+2] photocycloadditions. J. Am. Chem. Soc. 139, 9120–9123 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Tröster, A., Alonso, R., Bauer, A. & Bach, T. Enantioselective intermolecular [2+2] photocycloaddition reactions of 2(1H)-quinolones induced by visible-light irradiation. J. Am. Chem. Soc. 138, 7808–7811 (2016).

  21. Blum, T. R., Miller, Z. D., Bates, D. M., Guzei, I. A. & Yoon, T. P. Enantioselective photochemistry through Lewis acid-catalyzed triplet energy transfer. Science 354, 1391–1395 (2016).

  22. Zou, Y.-Q. et al. Visible-light-induced intermolecular [2+2]-cycloaddition reactions of 3-ylideneoxindoles through energy transfer pathway. Tetrahedron 68, 6914–6919 (2012).

  23. Murray, P. R. D. et al. Intermolecular crossed [2+2] cycloaddition promoted by visible-light triplet photosensitization: expedient access to polysubstituted 2-oxaspiro[3.3]heptanes. J. Am. Chem. Soc. 143, 4055–4063 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Rykaczewski, K. A. & Schindler, C. S. Visible-light-enabled Paternò–Büchi reaction via triplet energy transfer for the synthesis of oxetanes. Org. Lett. 22, 6516–6519 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, J., Dong, X. & Yoon, T. P. Divergent photocatalytic reactions of α-ketoesters under triplet sensitization and photoredox conditions. Org. Lett. 22, 6520–6525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Becker, M. R., Richardson, A. D. & Schindler, C. S. Functionalized azetidines via visible-light-enabled aza Paternò–Büchi reactions. Nat. Commun. 10, 5095 (2019).

  27. Becker, M. R., Wearing, E. R. & Schindler, C. S. Synthesis of azetidines via visible-light-mediated intermolecular [2+2] photocycloadditions. Nat. Chem. 12, 898–905 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, M., Zheng, C., Zhang, X. & You, S.-L. Synthesis of cyclobutane-fused angular tetracyclic spiroindolines via visible-light-promoted intramolecular dearomatization of indole derivatives. J. Am. Chem. Soc. 141, 2636–2644 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, M., Huang, X.-L., Sun, S., Zheng, C. & You, S.-L. Visible-light-induced dearomatization of indoles/pyrroles with vinylcyclopropanes: expedient synthesis of structurally diverse polycyclic indolines/pyrrolines. J. Am. Chem. Soc. 143, 13441–13449 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Rolka, A. B. & Koenig, B. Dearomative cycloadditions utilizing an organic photosensitizer: an alternative to iridium catalysis. Org. Lett. 22, 5035–5040 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Oderinde, M. S. et al. Synthesis of cyclobutane-fused tetracyclic scaffolds via visible-light photocatalysis for building molecular complexity. J. Am. Chem. Soc. 142, 3094–3103 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Oderinde, M. S. et al. Photocatalytic dearomative intermolecular [2+2] cycloaddition of heterocycles for building molecular complexity. J. Org. Chem. 86, 1730–1747 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Ma, J. et al. Photochemical intermolecular dearomative cycloaddition of bicyclic azaarenes with alkenes. Science 371, 1338–1345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma, J. et al. Facile access to fused 2D/3D rings via intermolecular cascade dearomative [2+2] cycloaddition/rearrangement reactions of quinolines with alkenes. Nat. Catal. 5, 405–413 (2022).

    Article  CAS  Google Scholar 

  35. Bellotti, P. et al. Visible-light-photocatalyzed peri-(3+2) cycloadditions of quinolines. J. Am. Chem. Soc. 144, 15662–15671 (2022).

  36. Guo, R. et al. Photochemical dearomative cycloadditions of quinolines and alkenes: scope and mechanism studies. J. Am. Chem. Soc. 144, 17680–17691 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, M., Koo, Y. & Hong, S. N-functionalized pyridinium salts: a new chapter for site-selective pyridine C–H functionalization via radical-based processes under visible-light irradiation. Acc. Chem. Res. 55, 3043–3056 (2021).

  38. Jung, S., Shin, S., Park, S. & Hong, S. Visible-light-driven C4-selective alkylation of pyridinium derivatives with alkyl bromides. J. Am. Chem. Soc. 142, 11370–11375 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Cao, H. et al. Brønsted acid-enhanced direct hydrogen atom transfer photocatalysis to enable selective late-stage functionalization of unactivated C(sp3)–H bonds. Nat. Synth. 1, 794–803 (2022).

  40. Asanuma, Y., Eguchi, H., Nishiyama, H., Tomita, I. & Inagi, S. Synthesis of ring-fused pyridinium salts by intramolecular nucleophilic aromatic substitution reaction and their optoelectronic properties. Org. Lett. 19, 1824–1827 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Liao, F. et al. Are pyridinium ylides radicals? Chem. Commun. 56, 11287–11290 (2020).

    Article  CAS  Google Scholar 

  42. Soni, V. K. et al. Generation of N-centered radicals via a photocatalytic energy transfer: remote double functionalization of arenes facilitated by singlet oxygen. J. Am. Chem. Soc. 141, 10538–10545 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, W., Lavagnino, M. N., Gould, C. A., Alcázar, J. & MacMillan, D. W. C. A biomimetic SH2 cross-coupling mechanism for quaternary sp3-carbon formation. Science 374, 1258–1263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kiguchi, T., Schuppiser, J. L., Schwaller, J. C. & Streith, J. Photochemical syntheses of 1,2-diazepines. 11. Regiospecific synthesis of 1,2-dihydro-1,2-diazepin-3-ones. J. Org. Chem. 45, 5095–5100 (1980).

    Article  CAS  Google Scholar 

  45. Hu, X.-Q. et al. Catalytic N-radical cascade reaction of hydrazones by oxidative deprotonation electron transfer and TEMPO mediation. Nat. Commun. 7, 11188 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds (John Wiley & Sons, 1994).

  47. Moon, Y., Lee, W. & Hong, S. Visible-light-enabled ortho-selective aminopyridylation of alkenes with N-aminopyridinium ylides. J. Am. Chem. Soc. 142, 12420–12429 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Teegardin, K., Day, J. I., Chan, J. & Weaver, J. Advances in photocatalysis: a microreview of visible-light-mediated ruthenium- and iridium-catalyzed organic transformations.Org. Process Res. Dev. 20, 1156–1163 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported financially by the Institute for Basic Science (IBS-R010-A2). We thank D. Kim (IBS) for X-ray diffraction analysis.

Author information

Authors and Affiliations

Authors

Contributions

Experiment, W.L., Y.K. and S.H.; computation, W.L. and H.J.; paper, W.L., Y.K., H.J., S.C. and S.H.

Corresponding author

Correspondence to Sungwoo Hong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Bozhen Chen, Jia-Rong Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Discussion and Tables 1–4.

Supplementary Data 1

Crystallographic data for compound 2a; CCDC 2214977.

Supplementary Data 2

Crystallographic data for compound 2y; CCDC 2214980.

Supplementary Data 3

Crystallographic data for compound 4n; CCDC 2214981.

Supplementary Data 4

Computational data for DFT calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Koo, Y., Jung, H. et al. Energy-transfer-induced [3+2] cycloadditions of N–N pyridinium ylides. Nat. Chem. 15, 1091–1099 (2023). https://doi.org/10.1038/s41557-023-01258-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01258-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing