Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A catenane that is topologically achiral despite being composed of oriented rings

Abstract

Catenanes—molecules comprising two interlocking rings held together like links in a chain—are topologically non-trivial: a catenane is a topological isomer of its separated rings, but the rings cannot be disconnected without bond scission. Catenanes can exist as topological enantiomers if both rings have directionality conferred by a defined atom sequence, but this has led to the assumption that the stereochemistry of chiral catenanes composed of oriented rings is inherently topological in nature. Here we show that this assumption is incorrect by synthesizing an example that contains the same fundamental stereogenic unit but whose stereochemistry is Euclidean. One ring in this chiral catenane is oriented by the geometry of an exocyclic double rather than determined by atom sequence within the ring. Isomerization of the exocyclic double bond results in racemization of the catenane, confirming that the stereochemistry is not topological in nature. Thus, we can unite the stereochemistry of catenanes with that of their topologically trivial cousins, the rotaxanes, enabling a more unified approach to their discussion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example structures and molecular graphs exemplifying the key concepts in chemical topology.
Fig. 2: Synthesis of catenane 5 and the solid-state structure of intermediate catenane 4.
Fig. 3: Analytical data for catenanes 5 and the stereoisomerization processes observed.
Fig. 4: Schematic examples of mechanically planar chiral catenanes and rotaxanes.

Similar content being viewed by others

Data availability

Raw characterization data are available through the University of Southampton data repository (https://doi.org/10.5258/SOTON/D2492)40. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2207578 ((S,Smp,Eco-c)-4) and CCDC 2207579 (S34). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Walba, D. M. Topological stereochemistry. Tetrahedron 41, 3161–3212 (1985).

    Article  CAS  Google Scholar 

  2. Flapan, E. When Topology Meets Chemistry (Cambridge Univ. Press, 2012).

  3. Cayley, E. Ueber die analytischen Figuren, welche in der Mathematik Bäume genannt werden und ihre Anwendung auf die Theorie chemischer Verbindungen. Ber. Dtsch. Chem. Ges. 8, 1056–1059 (2006).

    Article  Google Scholar 

  4. Devillers, J. & Balaban, A. T. Topological Indices and Related Descriptors in QSAR and QSPR (CRC Press, 2000).

  5. Thomson, W. II. On vortex atoms. Philos. Mag. 34, 15–24 (1867).

    Article  Google Scholar 

  6. Mislow, K. On the classification of pairwise relations between isomeric structures. Bull. Soc. Chim. Belg. 86, 595–601 (2010).

    Article  Google Scholar 

  7. Frisch, H. L. & Wasserman, E. Chemical topology. J. Am. Chem. Soc. 83, 3789–3795 (1961).

    Article  CAS  Google Scholar 

  8. Wasserman, E. The preparation of interlocking rings: a catenane. J. Am. Chem. Soc. 82, 4433–4434 (1960).

    Article  CAS  Google Scholar 

  9. Herges, R. Topology in chemistry: designing Möbius molecules. Chem. Rev. 106, 4820–4842 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Ajami, D., Oeckler, O., Simon, A. & Herges, R. Synthesis of a Möbius aromatic hydrocarbon. Nature 426, 819–821 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Segawa, Y. et al. Synthesis of a Möbius carbon nanobelt. Nat. Synth. 1, 535–541 (2022).

    Article  Google Scholar 

  12. Fielden, S. D. P., Leigh, D. A. & Woltering, S. L. Molecular knots. Angew. Chem. Int. Ed. 56, 11166–11194 (2017).

    Article  CAS  Google Scholar 

  13. Paquette, L. A. & Vazeux, M. Threefold transannular epoxide cyclization. Synthesis of a heterocyclic 17-hexaquinane. Tetrahedron Lett. 22, 291–294 (1981).

    Article  CAS  Google Scholar 

  14. Benner, S. A., Maggio, J. E. & Simmons, H. E. Rearrangement of a geometrically restricted triepoxide to the first topologically nonplanar molecule: a reaction path elucidated by using oxygen isotope effects on carbon-13 chemical shifts. J. Am. Chem. Soc. 103, 1581–1582 (1981).

    Article  CAS  Google Scholar 

  15. Dabrowski-Tumanski, P. & Sulkowska, J. I. Topological knots and links in proteins. Proc. Natl Acad. Sci. USA 114, 3415–3420 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bettotti, P. et al. Structure and properties of DNA molecules over the full range of biologically relevant supercoiling states. Sci. Rep. 8, 6163 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chambron, J. C., Dietrich-Buchecker, C., Rapenne, G. & Sauvage, J. P. Resolution of topologically chiral molecular objects. Chirality 10, 125–133 (1998).

    Article  CAS  Google Scholar 

  18. Yamamoto, C., Okamoto, Y., Schmidt, T., Jager, R. & Vogtle, F. Enantiomeric resolution of cycloenantiomeric rotaxane, topologically chiral catenane, and pretzel-shaped molecules: observation of pronounced circular dichroism. J. Am. Chem. Soc. 119, 10547–10548 (1997).

    Article  CAS  Google Scholar 

  19. Walba, D. M., Zheng, Q. Y. & Schilling, K. Topological stereochemistry. 8. Experimental studies on the hook and ladder approach to molecular knots: synthesis of a topologically chiral cyclized hook and ladder. J. Am. Chem. Soc. 114, 6259–6260 (1992).

    Article  CAS  Google Scholar 

  20. Zhang, G. et al. Lanthanide template synthesis of trefoil knots of single handedness. J. Am. Chem. Soc. 137, 10437–10442 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Carpenter, J. P. et al. Controlling the shape and chirality of an eight-crossing molecular knot. Chem 7, 1534–1543 (2021).

    Article  CAS  Google Scholar 

  22. Ponnuswamy, N., Cougnon, F. B., Pantos, G. D. & Sanders, J. K. Homochiral and meso figure eight knots and a Solomon link. J. Am. Chem. Soc. 136, 8243–8251 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Cui, Z., Lu, Y., Gao, X., Feng, H.-J. & Jin, G.-X. Stereoselective synthesis of a topologically chiral Solomon link. J. Am. Chem. Soc. 142, 13667–13671 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Jamieson, E. M. G., Modicom, F. & Goldup, S. M. Chirality in rotaxanes and catenanes. Chem. Soc. Rev. 47, 5266–5311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maynard, J. R. J. & Goldup, S. M. Strategies for the synthesis of enantiopure mechanically chiral molecules. Chem 6, 1914–1932 (2020).

    Article  CAS  Google Scholar 

  26. Wang, Y. et al. Multistate circularly polarized luminescence switching through stimuli‐induced co‐conformation regulations of pyrene‐functionalized topologically chiral [2]catenane. Angew. Chem. Int. Ed. 61, e202210542 (2022).

    Article  CAS  Google Scholar 

  27. Denis, M., Lewis, J. E. M., Modicom, F. & Goldup, S. M. An auxiliary approach for the stereoselective synthesis of topologically chiral catenanes. Chem 5, 1512–1520 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Denis, M. & Goldup, S. M. The active template approach to interlocked molecules. Nat. Rev. Chem. 1, 0061 (2017).

    Article  CAS  Google Scholar 

  29. Zhang, S., Rodríguez-Rubio, A., Saady, A., Tizzard, G. J. & Goldup, S. M. A chiral macrocycle for the stereoselective synthesis of mechanically planar chiral rotaxanes and catenanes. Chem (in the press); https://doi.org/10.1016/j.chempr.2023.01.009

  30. Corra, S., de Vet, C., Baroncini, M., Credi, A. & Silvi, S. Stereodynamics of E/Z isomerization in rotaxanes through mechanical shuttling and covalent bond rotation. Chem 7, 2137–2150 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodriguez-Rubio, A., Savoini, A., Modicom, F., Butler, P. & Goldup, S. M. A co-conformationally ‘topologically’ chiral catenane. J. Am. Chem. Soc. 144, 11927–11932 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maynard, J. R. J., Gallagher, P., Lozano, D., Butler, P. & Goldup, S. M. Mechanically axially chiral catenanes and noncanonical mechanically axially chiral rotaxanes. Nat. Chem. 14, 1038–1044 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Caprice, K. et al. Diastereoselective amplification of a mechanically chiral [2]catenane. J. Am. Chem. Soc. 143, 11957–11962 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Canfield, P. J. et al. A new fundamental type of conformational isomerism. Nat. Chem. 10, 615–624 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Reisberg, S. H. et al. Total synthesis reveals atypical atropisomerism in a small-molecule natural product, tryptorubin A. Science 367, 458–463 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borsley, S., Kreidt, E., Leigh, D. A. & Roberts, B. M. W. Autonomous fuelled directional rotation about a covalent single bond. Nature 604, 80–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Mo, K. et al. Intrinsically unidirectional chemically fuelled rotary molecular motors. Nature 609, 293–298 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Cahn, R. S., Ingold, C. & Prelog, V. Specification of molecular chirality. Angew. Chem. Int. Ed. 5, 385–415 (1966).

    Article  CAS  Google Scholar 

  39. Alvarez-Perez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Pairault, N. et al. Dataset supporting the article ‘A catenane that is topologically achiral despite being composed of oriented rings’. University of Southampton Institutional Research Repository https://doi.org/10.5258/SOTON/D2492 (2023).

Download references

Acknowledgements

S.M.G thanks the European Research Council (Consolidator Grant, agreement no. 724987) and the Royal Society for a Research Fellowship (RSWF\FT\180010). E.M.G.J. thanks the EPSRC and University of Southampton for a Doctoral Prize Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.M.G. secured project funding. S.M.G. and E.M.G.J. conceived the study. F.R. carried out the initial synthesis of catenane 3 and characterized the intermediates leading to this structure. N.P. optimized the synthesis of catenane 3 and its conversion to catenane 5. N.P. and D.L.M. completed the synthesis of the final compounds and their characterization. N.P. performed the isomerization studies of catenane 5, including the synthesis and analysis of model compounds. N.P. obtained single crystals of catenane 4 and model rotaxane S34 for X-ray analysis, which was performed by G.J.T. N.P. led the preparation of the Supplementary Information, including the stereochemical analysis of all interlocked products. S.M.G. wrote the manuscript. All authors contributed to the reviewing and editing of the manuscript and Supplementary Information.

Corresponding author

Correspondence to Stephen M. Goldup.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Annotated representations of catenane 3 for assigning the absolute stereochemistry of the molecule.

a. The structure of catenane (S,Rmp,Eco-c)-3 produced from the reaction of (Z)-1 and (S)-2. The triazole C atom in bold is higher priority for the purpose of defining the co-conformational geometry. b. The (S,Rmp,Zco-c)-3 co-conformational covalent geometric isomer of 3. The triazole C atom in bold is higher priority for the purpose of defining the co-conformational geometry in this structure. c. The components of 3 with atoms A and B labelled. The triazole C atom in bold is higher priority for the purpose of defining the orientation of the triazole containing macrocycle (this is a fixed property of the covalent structure, as opposed to the bold atoms in a. and b. which depend on the position of the bipyridine ring). d. Catenane 3 redrawn such that the A→B vector of the bipyridine macrocycle passes through the triazole macrocycle away from the observer, confirming that the stereochemistry of 3 produced from (S)-2 is Rmp.

Extended Data Fig. 2 Annotated representations of catenane 4 for assigning the absolute stereochemistry of the molecule.

a. The structure of catenane (S,Smp,Eco-c)-4 produced from (S)-2. b. The bipyridine macrocycle with atoms A and B labelled (A and B atoms of the triazole macrocycle as in Extended Data Fig. 1c). c. Catenane 4 with the A→B vector of the bipyridine ring passing through the triazole macrocycle away from the observer, confirming that the stereochemistry of 4 produced from (S)-2 is Smp.

Extended Data Fig. 3 Annotated representations of catenane S16 for assigning the absolute stereochemistry of the molecule.

a. The structure of catenane (Smp,Eco-c)-S16 produced from (S)-2. b. The bipyridine macrocycle of S16 with atoms A and B labelled (A and B atoms of the triazole macrocycle as in Extended Data Fig. 1c). c. Catenane S16 with the A→B vector of the bipyridine macrocycle passing through the triazole macrocycle away from the observer, confirming that the stereochemistry of S16 produced from (S)-2 is Smp.

Extended Data Fig. 4 Annotated representations of catenane 5 for assigning the absolute stereochemistry of the molecule.

a. The structure of catenane (Rmp,Eco-c)-5 produced from (S)-2 as depicted in the manuscript. b. The triazole-containing macrocycle with atoms A and B labelled (A and B atoms of the bipyridine macrocycle as in Extended Data Fig. 3b). c. Catenane 5 with the A→B vector of the bipyridine macrocycle passing through the triazole macrocycle away from the observer, confirming that the stereochemistry of 5 produced from (S)-2 is Rmp.

Supplementary information

Supplementary Information

Experimental procedures and analytical data for all compounds. Elaborated discussions of manuscript content.

Supplementary Data 1

Crystallographic data for catenane 4 (CCDC 2207578>).

Supplementary Data 2

Crystallographic data for rotaxane S34 (CCDC 2207579).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pairault, N., Rizzi, F., Lozano, D. et al. A catenane that is topologically achiral despite being composed of oriented rings. Nat. Chem. 15, 781–786 (2023). https://doi.org/10.1038/s41557-023-01194-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01194-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing