Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetically encoded chemical crosslinking of carbohydrate

Abstract

Protein–carbohydrate interactions play important roles in various biological processes, such as organism development, cancer metastasis, pathogen infection and immune response, but they remain challenging to study and exploit due to their low binding affinity and non-covalent nature. Here we site-specifically engineered covalent linkages between proteins and carbohydrates under biocompatible conditions. We show that sulfonyl fluoride reacts with glycans via a proximity-enabled reactivity, and to harness this a bioreactive unnatural amino acid (SFY) that contains sulfonyl fluoride was genetically encoded into proteins. SFY-incorporated Siglec-7 crosslinked with its sialoglycan ligand specifically in vitro and on the surface of cancer cells. Through irreversible cloaking of sialoglycan at the cancer cell surface, SFY-incorporated Siglec-7 enhanced the killing of cancer cells by natural killer cells. Genetically encoding the chemical crosslinking of proteins to carbohydrates (GECX-sugar) offers a solution to address the low affinity and weak strength of protein–sugar interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SF was identified as a suitable functional group for crosslinking carbohydrate through proximity-enabled reactivity using a strategy that involves plant-and-cast small-molecule crosslinkers.
Fig. 2: Crosslinking of Siglec-7v with azido-GD3 by NHSF was dependent on the concentration and the specific protein–carbohydrate binding.
Fig. 3: Crosslinking site on Siglec-7v and distance dependence of the crosslinker indicate that the SF of NHSF reacted with the carbohydrate via proximity-enabled reactivity.
Fig. 4: Genetic incorporation of SFY into proteins in E. coli.
Fig. 5: Siglec-7v(SFY) crosslinked with azido-GD3 in vitro and with sialoglycan on the cell surface.
Fig. 6: Siglec-7v(SFY)-enhanced NK cell killing of cancer cells.

Similar content being viewed by others

Data availability

All data supporting the results and conclusions are available within the article and its Supplementary Information. Synthetic experimental procedures, compound characterization, NMR and HPLC are available in the Supplementary Information. Requests for materials should be addressed to L.W. Source data are provided with this paper.

References

  1. Sears, P. & Wong, C. Carbohydrate mimetics: a new strategy for tackling the problem of carbohydrate-mediated biological recognition. Angew. Chem. Int. Ed. 38, 2300–2324 (1999).

    Article  CAS  Google Scholar 

  2. Spiro, R. G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12, 43R–56R (2002).

    Article  CAS  Google Scholar 

  3. Fuster, M. M. & Esko, J. D. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5, 526–542 (2005).

    Article  CAS  Google Scholar 

  4. Stowell, S. R., Ju, T. & Cummings, R. D. Protein glycosylation in cancer. Annu. Rev. Pathol. 10, 473–510 (2015).

    Article  CAS  Google Scholar 

  5. Imberty, A. & Prestegard, J. H. in Essentials of Glycobiology 3rd edn (eds Varki, A. et al.) Ch. 30 (Blackwells, 2015).

  6. Nelson, R. M., Venot, A., Bevilacqua, M. P., Linhardt, R. J. & Stamenkovic, I. Carbohydrate–protein interactions in vascular biology. Annu. Rev. Cell Dev. Biol. 11, 601–631 (1995).

    Article  CAS  Google Scholar 

  7. Sterner, E., Flanagan, N. & Gildersleeve, J. C. Perspectives on anti-glycan antibodies gleaned from development of a community resource database. ACS Chem. Biol. 11, 1773–1783 (2016).

    Article  CAS  Google Scholar 

  8. Polonskaya, Z., Savage, P. B., Finn, M. G. & Teyton, L. High-affinity anti-glycan antibodies: challenges and strategies. Curr. Opin. Immunol. 59, 65–71 (2019).

    Article  CAS  Google Scholar 

  9. Hudak, J. E. & Bertozzi, C. R. Glycotherapy: new advances inspire a reemergence of glycans in medicine. Chem. Biol. 21, 16–37 (2014).

    Article  CAS  Google Scholar 

  10. Xiang, Z. et al. Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity. Nat. Methods 10, 885–888 (2013).

    Article  CAS  Google Scholar 

  11. Wang, L. Genetically encoding new bioreactivity. New Biotechnol. 38, 16–25 (2017).

    Article  Google Scholar 

  12. Yang, B. et al. Spontaneous and specific chemical cross-linking in live cells to capture and identify protein interactions. Nat. Commun. 8, 2240 (2017).

    Article  Google Scholar 

  13. Li, Q. et al. Developing covalent protein drugs via proximity-enabled reactive therapeutics. Cell 182, 85–97.e16 (2020).

    Article  CAS  Google Scholar 

  14. Liu, C. et al. Identification of protein direct interactome with genetic code expansion and search engine OpenUaa. Adv. Biol. 5, e2000308 (2021).

    Article  Google Scholar 

  15. Xuan, W., Li, J., Luo, X. & Schultz, P. G. Genetic incorporation of a reactive isothiocyanate group into proteins. Angew. Chem. Int. Ed. 128, 10219–10222 (2016).

    Article  Google Scholar 

  16. Jäger, M. & Minnaard, A. J. Regioselective modification of unprotected glycosides. Chem. Commun. 52, 656–664 (2016).

    Article  Google Scholar 

  17. Wang, L.-X. & Davis, B. G. Realizing the promise of chemical glycobiology. Chem. Sci. 4, 3381–3394 (2013).

    Article  CAS  Google Scholar 

  18. Falco, M. et al. Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J. Exp. Med. 190, 793–802 (1999).

    Article  CAS  Google Scholar 

  19. Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    Article  CAS  Google Scholar 

  20. Yamaji, T., Teranishi, T., Alphey, M. S., Crocker, P. R. & Hashimoto, Y. A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to α2,8-disialyl and branched α2,6-sialyl residues. A comparison with Siglec-9. J. Biol. Chem. 277, 6324–6332 (2002).

    Article  CAS  Google Scholar 

  21. Attrill, H. et al. The structure of Siglec-7 in complex with sialosides: leads for rational structure-based inhibitor design. Biochem. J. 397, 271–278 (2006).

    Article  CAS  Google Scholar 

  22. Macauley, M. S., Crocker, P. R. & Paulson, J. C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666 (2014).

    Article  CAS  Google Scholar 

  23. Cao, L. & Wang, L. New covalent bonding ability for proteins. Protein Sci. 31, 312–322 (2022).

    Article  CAS  Google Scholar 

  24. Yang, B. et al. Proximity-enhanced SuFEx chemical cross-linker for specific and multitargeting cross-linking mass spectrometry. Proc. Natl Acad. Sci. USA 115, 11162–11167 (2018).

    Article  CAS  Google Scholar 

  25. Hoppmann, C. & Wang, L. Proximity-enabled bioreactivity to generate covalent peptide inhibitors of p53-Mdm4. Chem. Commun. 52, 5140–5143 (2016).

    Article  CAS  Google Scholar 

  26. Xiang, Z. et al. Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angew. Chem. Int. Ed. 53, 2190–2193 (2014).

    Article  CAS  Google Scholar 

  27. Chen, X. H. et al. Genetically encoding an electrophilic amino acid for protein stapling and covalent binding to native receptors. ACS Chem. Biol. 9, 1956–1961 (2014).

    Article  CAS  Google Scholar 

  28. Hoppmann, C., Maslennikov, I., Choe, S. & Wang, L. In situ formation of an azo bridge on proteins controllable by visible light. J. Am. Chem. Soc. 137, 11218–11221 (2015).

    Article  CAS  Google Scholar 

  29. Wang, N. et al. Genetically encoding fluorosulfate-l-tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteins in vivo. J. Am. Chem. Soc. 140, 4995–4999 (2018).

    Article  CAS  Google Scholar 

  30. Liu, J. et al. Genetically encoding photocaged quinone methide to multitarget protein residues covalently in vivo. J. Am. Chem. Soc. 141, 9458–9462 (2019).

    Article  CAS  Google Scholar 

  31. Liu, J. et al. Genetically encoded quinone methides enabling rapid, site-specific, and photocontrolled protein modification with amine reagents. J. Am. Chem. Soc. 142, 17057–17068 (2020).

    Article  CAS  Google Scholar 

  32. Liu, J. et al. Photocaged quinone methide crosslinkers for light-controlled chemical crosslinking of protein–protein and protein–DNA complexes. Angew. Chem. Int. Ed. 58, 18839–18843 (2019).

    Article  CAS  Google Scholar 

  33. Yu, H. et al. Chemoenzymatic synthesis of GD3 oligosaccharides and other disialyl glycans containing natural and non-natural sialic acids. J. Am. Chem. Soc. 131, 18467–18477 (2009).

    Article  CAS  Google Scholar 

  34. Yu, R. K., Tsai, Y.-T., Ariga, T. & Yanagisawa, M. Structures, biosynthesis, and functions of gangliosides—an overview. J. Oleo. Sci. 60, 537–544 (2011).

    Article  CAS  Google Scholar 

  35. Krengel, U. & Bousquet, P. A. Molecular recognition of gangliosides and their potential for cancer immunotherapies. Front. Immunol. 5, 325 (2014).

    Article  Google Scholar 

  36. Attrill, H. et al. Siglec-7 undergoes a major conformational change when complexed with the α(2,8)-disialylganglioside GT1b. J. Biol. Chem. 281, 32774–32783 (2006).

    Article  CAS  Google Scholar 

  37. Lacey, V. K., Louie, G. V., Noel, J. P. & Wang, L. Expanding the library and substrate diversity of the pyrrolysyl-tRNA synthetase to incorporate unnatural amino acids containing conjugated rings. ChemBioChem 14, 2100–2105 (2013).

    Article  CAS  Google Scholar 

  38. Takimoto, J. K., Dellas, N., Noel, J. P. & Wang, L. Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids. ACS Chem. Biol. 6, 733–743 (2011).

    Article  CAS  Google Scholar 

  39. Kobayashi, T., Hoppmann, C., Yang, B. & Wang, L. Using protein-confined proximity to determine chemical reactivity. J. Am. Chem. Soc. 138, 14832–14835 (2016).

    Article  CAS  Google Scholar 

  40. Portoukalian, J., Zwingelstein, G. & Doré, J. F. Lipid composition of human malignant melanoma tumors at various levels of malignant growth. Eur. J. Biochem. 94, 19–23 (1979).

    Article  CAS  Google Scholar 

  41. Razi, N. & Varki, A. Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proc. Natl Acad. Sci. USA 95, 7469–7474 (1998).

    Article  CAS  Google Scholar 

  42. Dippold, W. G. et al. Cell surface antigens of human malignant melanoma: definition of six antigenic systems with mouse monoclonal antibodies. Proc. Natl Acad. Sci. USA 77, 6114–6118 (1980).

    Article  CAS  Google Scholar 

  43. Suck, G. et al. NK-92: an ‘off-the-shelf therapeutic’ for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol. Immunother. 65, 485–492 (2016).

    Article  CAS  Google Scholar 

  44. Joiner, C. M., Li, H., Jiang, J. & Walker, S. Structural characterization of the O-GlcNAc cycling enzymes: insights into substrate recognition and catalytic mechanisms. Curr. Opin. Struct. Biol. 56, 97–106 (2019).

    Article  CAS  Google Scholar 

  45. van de Wall, S., Santegoets, K. C. M., van Houtum, E. J. H., Büll, C. & Adema, G. J. Sialoglycans and Siglecs can shape the tumor immune microenvironment. Trends Immunol. 41, 274–285 (2020).

    Article  Google Scholar 

  46. Li, R. E., van Vliet, S. J. & van Kooyk, Y. Using the glycan toolbox for pathogenic interventions and glycan immunotherapy. Curr. Opin. Biotechnol. 51, 24–31 (2018).

    Article  CAS  Google Scholar 

  47. Hu, C.-W. et al. Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase. Nat. Chem. Biol. 13, 1267–1273 (2017).

    Article  CAS  Google Scholar 

  48. Chang, P. V. et al. Metabolic labeling of sialic acids in living animals with alkynyl sugars. Angew. Chem. Int. Ed. 48, 4030–4033 (2009).

    Article  CAS  Google Scholar 

  49. Speers, A. E. & Cravatt, B. F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11, 535–546 (2004).

    Article  CAS  Google Scholar 

  50. Yang, Y., Yang, X. & Verhelst, S. H. L. Comparative analysis of click chemistry mediated activity-based protein profiling in cell lysates. Molecules 18, 12599–12608 (2013).

    Article  CAS  Google Scholar 

  51. Borrel, G. et al. Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15, 679 (2014).

    Article  Google Scholar 

  52. Chen, Z.-L. et al. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat. Commun. 10, 3404 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

L.W. acknowledges the support of the NIH (R01GM118384 and R01CA258300).

Author information

Authors and Affiliations

Authors

Contributions

S.L. and L.W. conceived research; S.L., B.Y. and L.W. designed the experiments; S.L., N.W., B.Y. and W.S. performed the experiments; S.L. and L.W. analysed the data; S.L., B.Y. and L.W. wrote the manuscript; L.W. supervised the project; and all the authors read and approved the manuscript.

Corresponding author

Correspondence to Lei Wang.

Ethics declarations

Competing interests

L.W., S.L. and N.W. are inventors on a patent application filed as International Application No. PCT/US2022/031925 by The Regents of the University of California. The patent application covers the unnatural amino acid SFY and its ability to crosslink carbohydrates, as described in the article. The other authors (B.Y. and W.S.) declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Ryan Flynn, Stephen Fried and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Chemo-enzymatic synthesis of azido-GD3, chemical synthesis procedure, NMR spectra and Supplementary Figs. 1–9, Tables 1 and 2 and Data Files.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Fig. 3.

Supplementary Data 2

Source data for Supplementary Fig. 6.

Supplementary Data 3

Source data for Supplementary Fig. 9.

Source data

Source Data Fig. 1

Unprocessed western blots and statistical source data.

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 5

Unprocessed western blots and statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, N., Yu, B. et al. Genetically encoded chemical crosslinking of carbohydrate. Nat. Chem. 15, 33–42 (2023). https://doi.org/10.1038/s41557-022-01059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01059-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing