Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intersystem crossing in the entrance channel of the reaction of O(3P) with pyridine

Abstract

Two quantum effects can enable reactions to take place at energies below the barrier separating reactants from products: tunnelling and intersystem crossing between coupled potential energy surfaces. Here we show that intersystem crossing in the region between the pre-reactive complex and the reaction barrier can control the rate of bimolecular reactions for weakly coupled potential energy surfaces, even in the absence of heavy atoms. For O(3P) plus pyridine, a reaction relevant to combustion, astrochemistry and biochemistry, crossed-beam experiments indicate that the dominant products are pyrrole and CO, obtained through a spin-forbidden ring-contraction mechanism. The experimental findings are interpreted—by high-level quantum-chemical calculations and statistical non-adiabatic computations of branching fractions—in terms of an efficient intersystem crossing occurring before the high entrance barrier for O-atom addition to the N-atom lone pair. At low to moderate temperatures, the computed reaction rates prove to be dominated by intersystem crossing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic, simplified representation of the triplet and singlet PESs of the O-plus-pyridine reaction for O(3P) meta and ipso addition.
Fig. 2: Product LAB angular distributions and TOF distributions.
Fig. 3: Best-fit CM product angular and translational energy distributions.
Fig. 4: Total and single-channel rate constants.
Fig. 5: Frontier orbitals of the relevant MECPs.

Similar content being viewed by others

Data availability

Source data are provided with this paper (and can also be downloaded at https://doi.org/10.6084/m9.figshare.20423616).

References

  1. Bao, J. L. & Truhlar, D. G. Variational transition state theory: theoretical framework and recent developments. Chem. Soc. Rev. 46, 7548–7596 (2017).

    Article  CAS  Google Scholar 

  2. Smith, I. W. M. The temperature-dependence of elementary reaction rates: beyond Arrhenius. Chem. Soc. Rev. 37, 812–826 (2008).

    Article  CAS  Google Scholar 

  3. Smith, I. W. M. Laboratory astrochemistry: gas-phase processes. Annu. Rev. Astron. Astrophys. 49, 29–66 (2011).

    Article  CAS  Google Scholar 

  4. Sims, I. R. Tunnelling in space. Nat. Chem. 5, 734–736 (2013).

    Article  CAS  Google Scholar 

  5. Tizniti, M. et al. The rate of the F + H2 reaction at very low temperatures. Nat. Chem. 6, 141–145 (2014).

    Article  CAS  Google Scholar 

  6. Shannon, R. J., Blitz, M. A., Goddard, A. & Heard, D. E. Accelerated chemistry in the reaction between the hydroxyl radical and methanol at interstellar temperatures facilitated by tunnelling. Nat. Chem. 5, 745–749 (2013).

    Article  CAS  Google Scholar 

  7. Heard, D. E. Rapid acceleration of hydrogen atom abstraction reactions of OH at very low temperatures through weakly bound complexes and tunneling. Acc. Chem. Res. 51, 2620–2627 (2018).

    Article  CAS  Google Scholar 

  8. Harvey, J. N. Understanding the kinetics of spin-forbidden chemical reactions. Phys. Chem. Chem. Phys. 9, 331–343 (2007).

    Article  CAS  Google Scholar 

  9. Ahmadvand, S., Zaari, R. R. & Varganov, S. A. Spin forbidden and spin-allowed cyclopropenone (c-H2C3O) formation in interstellar medium. Astrophys. J. 795, 173 (2014).

    Article  Google Scholar 

  10. Jasper, A. W. Multidimensional effects in nonadiabatic statistical theories of spin-forbidden kinetics: a case study of 3O + CO → CO2. J. Phys. Chem. A 119, 7339–7351 (2015).

    Article  CAS  Google Scholar 

  11. Domcke, W., Yarkony, D. & Köppel, H. Conical Intersections: Electronic Structure, Dynamics & Spectroscopy 15 (World Scientific, 2004).

    Book  Google Scholar 

  12. Shen, L. et al. Role of multistate intersections in photochemistry. J. Phys. Chem. Lett. 11, 8490–8501 (2020).

    Article  CAS  Google Scholar 

  13. Wang, J. J., Smith, D. J. & Grice, R. Role of intersystem crossing in the dynamics of the O(3P) + (CH3)2CHI, (CH3)3CI reactions. J. Phys. Chem. 100, 13603–13608 (1996).

    Article  CAS  Google Scholar 

  14. Stevens, J. E., Cui, Q. & Morokuma, K. An ab initio investigation of spin-allowed and spin-forbidden pathways of the gas phase reactions of O(3P)+C2H5I. J. Chem. Phys. 108, 1544–1551 (1998).

    Article  CAS  Google Scholar 

  15. Fu, B. et al. Intersystem crossing and dynamics in O(3P) + C2H4 multichannel reaction: experiment validates theory. Proc. Natl Acad. Sci. USA 109, 9733–9738 (2012).

    Article  CAS  Google Scholar 

  16. Gimondi, I., Cavallotti, C., Vanuzzo, G., Balucani, N. & Casavecchia, P. Reaction dynamics of O(3P) + propyne: II. Primary products, branching ratios, and role of intersystem crossing from ab initio coupled triplet/singlet potential energy surfaces and statistical calculations. J. Phys. Chem. A 120, 4619–4633 (2016).

    Article  CAS  Google Scholar 

  17. Leonori, F. et al. Experimental and theoretical studies on the dynamics of the O(3P) + propene reaction: primary products, branching ratios, and role of intersystem crossing. J. Phys. Chem. C 119, 14632–14652 (2015).

    Article  CAS  Google Scholar 

  18. Leonori, F. et al. Crossed molecular beam dynamics studies of the O(3P) + allene reaction: primary products, branching ratios, and dominant role of intersystem crossing. J. Phys. Chem. Lett. 3, 75–80 (2012).

    Article  CAS  Google Scholar 

  19. Savee, J. D. et al. Multiplexed photoionization mass spectrometry investigation of the O(3P) + propyne reaction. J. Phys. Chem. A 119, 7388–7403 (2015).

    Article  CAS  Google Scholar 

  20. Cavallotti, C. et al. Theoretical study of the extent of intersystem crossing in the O(3P) + C6H6 reaction with experimental validation. J. Phys. Chem. Lett. 11, 9621–9628 (2020).

    Article  CAS  Google Scholar 

  21. Taatjes, C. A. et al. Products of the benzene + O(3P) reaction. J. Phys. Chem. A 114, 3355–3370 (2010).

    Article  CAS  Google Scholar 

  22. Vanuzzo, G. et al. Crossed-beam and theoretical studies of the O(3P, 1D) + benzene reactions: primary products, branching fractions, and role of intersystem crossing. J. Phys. Chem. A 125, 8434–8453 (2021).

    Article  CAS  Google Scholar 

  23. He, C. et al. Non-adiabatic reaction dynamics in the gas-phase formation of phosphinidenesilylene, the isovalent counterpart of hydrogen isocyanide, under single-collision conditions. J. Phys. Chem. Lett. 12, 2489–2495 (2021).

    Article  CAS  Google Scholar 

  24. Koziar, J. C. & Cowan, D. O. Photochemical heavy-atom effects. Acc. Chem. Res. 11, 334–341 (1978).

    Article  CAS  Google Scholar 

  25. Alagia, M. et al. Crossed beam studies of the O(3P,1D)+CH3I reactions: direct evidence of intersystem crossing for bent geometries. Faraday Discuss. 113, 133–150 (1999).

    Article  CAS  Google Scholar 

  26. Pan, H., Liu, K., Caracciolo, A. & Casavecchia, P. Crossed beam polyatomic reaction dynamics: recent advances and new insights. Chem. Soc. Rev. 46, 7517–7547 (2017).

    Article  CAS  Google Scholar 

  27. Casavecchia, P., Leonori, F. & Balucani, N. Reaction dynamics of oxygen atoms with unsaturated hydrocarbons from crossed molecular beam studies: primary products, branching ratios and role of intersystem crossing. Int. Rev. Phys. Chem. 34, 161–204 (2015).

    Article  CAS  Google Scholar 

  28. Mebel, A. M., Kislov, V. V. & Hayashi, M. Prediction of product branching ratios in the C(3P) + C2H2 → l-C3H + H / c-C3H + H / C3 + H2 reaction using ab initio coupled clusters calculations extrapolated to the complete basis set combined with Rice-Ramsperger-Kassel-Marcus and radiationless transition theories. J. Chem. Phys. 126, 204310 (2007).

    Article  CAS  Google Scholar 

  29. Leonori, F. et al. Unraveling the dynamics of the C(3P,1D) + C2H2 reactions by the crossed molecular beam scattering technique. J. Phys. Chem. A 112, 1363–1379 (2008).

    Article  CAS  Google Scholar 

  30. Li, H., Kamasah, A., Matsika, S. & Suits, A. G. Intersystem crossing in the exit channel. Nat. Chem. 11, 123–128 (2019).

    Article  CAS  Google Scholar 

  31. Wang, B. et al. A kinetic study of NO formation during oxy-fuel combustion of pyridine. Appl. Energy 92, 361–368 (2012).

    Article  CAS  Google Scholar 

  32. Parker, D. S. N. et al. On the formation of pyridine in the interstellar medium. Phys. Chem. Chem. Phys. 17, 32000–32008 (2015).

    Article  CAS  Google Scholar 

  33. Puzzarini, C. & Barone, V. A never-ending story in the sky: the secrets of chemical evolution. Phys. Life Rev. 32, 59–94 (2020).

    Article  Google Scholar 

  34. Puzzarini, C., Bloino, J., Tasinato, N. & Barone, V. Accuracy and interpretability: the devil and the holy grail. New routes across old boundaries in computational spectroscopy. Chem. Rev. 119, 8131–8191 (2019).

    Article  CAS  Google Scholar 

  35. Klippenstein, S. J. & Cavallotti, C. in Computer Aided Chemical Engineering Vol. 45 (eds Faravelli, T., Manenti, F. & Ranzi, E.) 115–167 (Elsevier, 2019).

  36. Alessandrini, S., Barone, V. & Puzzarini, C. Extension of the “cheap” composite approach to noncovalent interactions: the jun-ChS scheme. J. Chem. Theory Comput. 16, 988–1006 (2020).

    Article  CAS  Google Scholar 

  37. Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124, 034108 (2006).

    Article  Google Scholar 

  38. Biczysko, M., Panek, P., Scalmani, G., Bloino, J. & Barone, V. Harmonic and anharmonic vibrational frequency calculations with the double-hybrid B2PLYP method: analytic second derivatives and benchmark studies. J. Chem. Theory Comput. 6, 2115–2125 (2010).

    Article  CAS  Google Scholar 

  39. Kaliakin, D. S., Fedorov, D. G., Alexeev, Y. & Varganov, S. A. Locating minimum energy crossings of different spin states using the fragment molecular orbital method. J. Chem. Theory Comput. 15, 6074–6084 (2019).

    Article  CAS  Google Scholar 

  40. Pulay, P. A perspective on the CASPT2 method. Int. J. Quantum Chem. 111, 3273–3279 (2011).

    Article  CAS  Google Scholar 

  41. Frerichs, H., Schliephake, V., Tappe, M. & Wagner, H. G. Reactions of pyridine and the picolines with atomic oxygen (O3P) in the gas phase. Zeitsch. Phys. Chem. 166, 157–165 (1990).

    CAS  Google Scholar 

  42. Tabares, F. & Gonzalez Urena, A. Rate constant for the reaction of atomic oxygen (3P) with pyridine from 323 to 473 K. J. Phys. Chem. 87, 4933–4936 (1983).

    Article  CAS  Google Scholar 

  43. El-Sayed, M. A. Triplet state. Its radiative and nonradiative properties. Acc. Chem. Res. 1, 8–16 (1968).

    Article  CAS  Google Scholar 

  44. Alagia, M. et al. Magnetic analysis of supersonic beams of atomic oxygen, nitrogen, and chlorine generated from a radio-frequency discharge. Isr. J. Chem. 37, 329–342 (1997).

    Article  CAS  Google Scholar 

  45. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  46. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  47. Crehuet, R. & Bofill, J. M. The reaction path intrinsic reaction coordinate method and the Hamilton–Jacobi theory. J. Chem. Phys. 122, 234105 (2005).

    Article  Google Scholar 

  48. Papajak, E., Leverentz, H. R., Zheng, J. & Truhlar, D. G. Efficient diffuse basis sets: cc-pVxZ+ and maug-cc-pVxZ. J. Chem. Theoy Comput. 5, 1197–1202 (2009).

    Article  CAS  Google Scholar 

  49. Raghavachari, K., Trucks, G. W., Pople, J. A. & Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Letts. 157, 479–483 (1989).

    Article  CAS  Google Scholar 

  50. Møller, C. & Plesset, M. S. Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618–622 (1934).

    Article  Google Scholar 

  51. Peterson, K. A. & Dunning, T. H. Jr Accurate correlation consistent basis sets for molecular core-valence correlation effects: the second-row atoms Al-Ar, and the first row atoms B-Ne revisited. J. Chem. Phys. 117, 10548–10560 (2002).

    Article  CAS  Google Scholar 

  52. Lupi, J., Puzzarini, C., Cavallotti, C. & Barone, V. State-of-the-art quantum chemistry meets variable reaction coordinate transition state theory to solve the puzzling case of the H2S + Cl system. J. Chem. Theory Comput. 16, 5090–5104 (2020).

    Article  CAS  Google Scholar 

  53. Alessandrini, S., Tonolo, F. & Puzzarini, C. In search of phosphorus in astronomical environments: the reaction between the CP radical (X2+) and methanimine. J. Chem. Phys. 154, 054306 (2021).

    Article  CAS  Google Scholar 

  54. Frisch, M. et al. Gaussian 16 v.C.01 (Gaussian, 2016).

  55. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  Google Scholar 

  56. Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650 (1980).

    Article  CAS  Google Scholar 

  57. Cavallotti, C., Pelucchi, M., Georgievskii, Y. & Klippenstein, S. J. EStokTP: electronic structure to temperature- and pressure-dependent rate constants—a code for automatically predicting the thermal kinetics of reactions. J. Chem. Theory Comput. 15, 1122–1145 (2019).

    Article  CAS  Google Scholar 

  58. Werner, H.-J., Knowles, P. J., Knizia, G., Manby, F. R. & Schütz, M. Molpro: a general-purpose quantum chemistry program package. WIREs Comput. Mol. Sci. 2, 242–253 (2012).

    Article  CAS  Google Scholar 

  59. Harvey, J. N. & Aschi, M. Modelling spin-forbidden reactions: recombination of carbon monoxide with iron tetracarbonyl. Faraday Discuss. 124, 129–143 (2003).

    Article  CAS  Google Scholar 

  60. Zener, C. Non-adiabatic crossing of energy levels. Proc. R. Soc. A 137, 696–702 (1932).

    Google Scholar 

  61. Wittig, C. The Landau−Zener formula. J. Phys. Chem. B 109, 8428–8430 (2005).

    Article  CAS  Google Scholar 

  62. Georgievskii, Y. & Klippenstein, S. J. Transition state theory for multichannel addition reactions: multifaceted dividing surfaces. J. Phys. Chem. A 107, 9776–9781 (2003).

    Article  CAS  Google Scholar 

  63. Barbato, A., Seghi, C. & Cavallotti, C. An ab initio Rice-Ramsperger-Kassel-Marcus/master equation investigation of SiH4 decomposition kinetics using a kinetic Monte Carlo approach. J. Chem. Phys. 130, 074108 (2009).

    Article  Google Scholar 

  64. Miller, J. A., Klippenstein, S. J. & Raffy, C. Solution of some one-and two-dimensional master equation models for thermal dissociation: the dissociation of methane in the low-pressure limit. J. Phys. Chem. A 106, 4904–4913 (2002).

    Article  CAS  Google Scholar 

  65. Georgievskii, Y., Miller, J. A., Burke, M. P. & Klippenstein, S. J. Reformulation and solution of the master equation for multiple-well chemical reactions. J. Phys. Chem. A 117, 12146–12154 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Italian MUR (PRIN 2017, grant 2017A4XRCA (V.B.); PRIN 2017, grant 2017PJ5XXX (P.C.); PRIN 2020, grant 202082CE3T (C.P.)) and the Italian Space Agency (‘Life in Space’ project, N.2019-3-U.0 (N.B.,V.B.)). We acknowledge the Scuola Normale Superiore (Internal Funds), the University of Bologna (RFO funds), the Italian MUR (Ministry of University and Research) and Università degli Studi di Perugia (within the programme ‘Department of Excellence−2018−2022−Project AMIS’) and the SMART@SNS Laboratory (http://smart.sns.it) for high-performance computer facilities.

Author information

Authors and Affiliations

Authors

Contributions

G.V., G.P., P.R., D.M., A.C. and V.J.M. performed the experiments and analysed the data; S.A. and A.B. performed the QC computations and analysed the results; P.C. and N.B. conceived and guided the experiments and the interpretation of the results; C.C., C.P. and V.B conceived the computational strategy and coordinated the interpretation of its results; and P.C., N.B., C.C., C.P. and V.B. cowrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Nadia Balucani, Carlo Cavallotti, Cristina Puzzarini or Vincenzo Barone.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Tables 1–6, Results, Methods, details and references.

Supplementary Data 1

Cartesian coordinates of the equilibrium structures of all stationary points on the triplet and singlet PESs.

Supplementary Data 2

Source data for Supplementary Fig. 15.

Source data

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Recio, P., Alessandrini, S., Vanuzzo, G. et al. Intersystem crossing in the entrance channel of the reaction of O(3P) with pyridine. Nat. Chem. 14, 1405–1412 (2022). https://doi.org/10.1038/s41557-022-01047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01047-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing