Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation

Abstract

Aprotic alkali metal–O2 batteries face two major obstacles to their chemistry occurring efficiently, the insulating nature of the formed alkali superoxides/peroxides and parasitic reactions that are caused by the highly reactive singlet oxygen (1O2). Redox mediators are recognized to be key for improving rechargeability. However, it is unclear how they affect 1O2 formation, which hinders strategies for their improvement. Here we clarify the mechanism of mediated peroxide and superoxide oxidation and thus explain how redox mediators either enhance or suppress 1O2 formation. We show that charging commences with peroxide oxidation to a superoxide intermediate and that redox potentials above ~3.5 V versus Li/Li+ drive 1O2 evolution from superoxide oxidation, while disproportionation always generates some 1O2. We find that 1O2 suppression requires oxidation to be faster than the generation of 1O2 from disproportionation. Oxidation rates decrease with growing driving force following Marcus inverted-region behaviour, establishing a region of maximum rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermodynamics of alkali (su)peroxides, 1O2 evolution thresholds and the used mediators.
Fig. 2: Singlet and triplet oxygen evolution upon mediated peroxide and superoxide oxidation.
Fig. 3: Kinetics of mediated (su)peroxide oxidation and superoxide disproportionation.
Fig. 4: Free energy dependence of superoxide oxidation kinetics.
Fig. 5: Mediated alkali (su)peroxide oxidation mechanism.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author S.A.F. upon reasonable request. Source data are provided with this paper.

References

  1. Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Lu, Y.-C. et al. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750–768 (2013).

    Article  CAS  Google Scholar 

  3. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  CAS  Google Scholar 

  4. Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1, 16128 (2016).

    Article  CAS  Google Scholar 

  5. Wang, Y. et al. A solvent-controlled oxidation mechanism of Li2O2 in lithium–oxygen batteries. Joule 2, 2364–2380 (2018).

    Article  CAS  Google Scholar 

  6. Ko, Y. et al. Redox mediators: a solution for advanced lithium–oxygen batteries. Trends Chem. 1, 349–360 (2019).

    Article  CAS  Google Scholar 

  7. Gao, X., Chen, Y., Johnson, L. & Bruce, P. G. Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 15, 882–888 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Lim, H.-D. et al. Rational design of redox mediators for advanced Li–O2 batteries. Nat. Energy 1, 16066 (2016).

    Article  CAS  Google Scholar 

  9. Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat. Chem. 7, 50–56 (2014).

    Article  PubMed  Google Scholar 

  10. Liu, T. et al. The effect of water on quinone redox mediators in nonaqueous Li–O2 batteries. J. Am. Chem. Soc. 140, 1428–1437 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Liang, Z. & Lu, Y.-C. Critical role of redox mediator in suppressing charging instabilities of lithium–oxygen batteries. J. Am. Chem. Soc. 138, 7574–7583 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. McCloskey, B. D. et al. Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 3, 997–1001 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. McCloskey, B. D. et al. Limitations in rechargeability of Li–O2 batteries and possible origins. J. Phys. Chem. Lett. 3, 3043–3047 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, T., Kim, G., Casford, M. T. L. & Grey, C. P. Mechanistic insights into the challenges of cycling a nonaqueous Na–O2 battery. J. Phys. Chem. Lett. 7, 4841–4846 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Burke, C. M. et al. Implications of 4 e oxygen reduction via iodide redox mediation in Li–O2 batteries. ACS Energy Lett. 1, 747–756 (2016).

    Article  CAS  Google Scholar 

  16. Chen, Y. et al. Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).

    Article  PubMed  Google Scholar 

  17. Bergner, B. J. et al. TEMPO: A mobile catalyst for rechargeable Li–O2 batteries. J. Am. Chem. Soc. 136, 15054–15064 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Lu, Y.-C. & Shao-Horn, Y. Probing the reaction kinetics of the charge reactions of nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 93–99 (2012).

    Article  PubMed  Google Scholar 

  19. Kang, S., Mo, Y., Ong, S. P. & Ceder, G. A facile mechanism for recharging Li2O2 in Li–O2 batteries. Chem. Mat. 25, 3328–3336 (2013).

    Article  CAS  Google Scholar 

  20. Wang, J. et al. Identifying reactive sites and transport limitations of oxygen reactions in aprotic lithium–O2 batteries at the stage of sudden death. Angew. Chem. Int. Ed. 55, 5201–5205 (2016).

    Article  CAS  Google Scholar 

  21. Ganapathy, S. et al. Nature of Li2O2 oxidation in a Li–O2 battery revealed by operando X-ray diffraction. J. Am. Chem. Soc. 136, 16335–16344 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Kwabi, D. G. et al. Controlling solution-mediated reaction mechanisms of oxygen reduction using potential and solvent for aprotic lithium–oxygen batteries. J. Phys. Chem. Lett. 7, 1204–1212 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Gao, X. et al. Phenol-catalyzed discharge in the aprotic lithium–oxygen battery. Angew. Chem. Int. Ed. 56, 6539–6543 (2017).

    Article  CAS  Google Scholar 

  24. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z. & Bruce, P. G. The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Wandt, J. et al. Singlet oxygen formation during the charging process of an aprotic lithium–oxygen battery. Angew. Chem. Int. Ed. 55, 6892–6895 (2016).

    Article  CAS  Google Scholar 

  26. Mahne, N. et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat. Energy 2, 17036 (2017).

    Article  CAS  Google Scholar 

  27. Mourad, E. et al. Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries. Energy Environ. Sci. 12, 2559–2568 (2019).

    Article  CAS  Google Scholar 

  28. Schafzahl, L. et al. Singlet oxygen during cycling of the aprotic sodium–O2 battery. Angew. Chem. Int. Ed. 56, 15728–15732 (2017).

    Article  CAS  Google Scholar 

  29. Liang, Z., Zou, Q., Xie, J. & Lu, Y.-C. Suppressing singlet oxygen generation in lithium-oxygen batteries with redox mediators. Energy Environ. Sci. 13, 1106–1126 (2020).

    Article  Google Scholar 

  30. Park, J.-B. et al. Redox mediators for Li–O2 batteries: Status and perspectives. Adv. Mat. 30, 1704162 (2018).

    Article  Google Scholar 

  31. Pande, V. & Viswanathan, V. Criteria and considerations for the selection of redox mediators in nonaqueous Li–O2 batteries. ACS Energy Lett. 2, 60–63 (2017).

    Article  CAS  Google Scholar 

  32. Chen, Y., Gao, X., Johnson, L. R. & Bruce, P. G. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nat. Commun. 9, 767 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gao, X. et al. A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nat. Energy 2, 17118 (2017).

    Article  CAS  Google Scholar 

  34. Kundu, D., Black, R., Adams, B. & Nazar, L. F. A highly active low voltage redox mediator for enhanced rechargeability of lithium–oxygen batteries. ACS Cent. Sci. 1, 510–515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chase, G. V. et al. Soluble oxygen evolving catalysts for rechargeable metal-air batteries. US Patent App. 13/093,759 (2011).

  36. Landa-Medrano, I. et al. Redox mediators: a shuttle to efficacy in metal–O2 batteries. J. Mat. Chem. A 7, 8746–8764 (2019).

    Article  CAS  Google Scholar 

  37. Leverick, G. et al. Solvent-dependent oxidizing power of LiI redox couples for Li-O2 batteries. Joule. 3, 1106–1126 (2019).

    Article  CAS  Google Scholar 

  38. Li, Q. et al. A spectroscopic study on singlet oxygen production from different reaction paths using solid inorganic peroxides as starting materials. Bull. Korean Chem. Soc. 28, 1656–1660 (2007).

    Article  CAS  Google Scholar 

  39. Qingwei, L. et al. Singlet oxygen production in the reaction of potassium superoxide with chlorine. Chem. Lett. 36, 496–497 (2007).

    Article  Google Scholar 

  40. Mayeda, E. A. & Bard, A. J. Production of singlet oxygen in electrogenerated radical ion electron transfer reactions. J. Am. Chem. Soc. 95, 6223–6226 (1973).

    Article  CAS  Google Scholar 

  41. Senthil Kumar, S. & Bard, A. J. Background emission of electrogenerated chemiluminescence during oxidation of tri-n-propylamine from the dimeric 1Δg state of O2. Anal. Chem. 85, 292–295 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Ando, W. et al. Formation of sulfinyl oxide and singlet oxygen in the reaction of thianthrene cation radical and superoxide ion. J. Am. Chem. Soc. 102, 4526–4528 (1980).

    Article  CAS  Google Scholar 

  43. Pierini, A., Brutti, S. & Bodo, E. Superoxide anions disproportionation induced by Li+ and H+: pathways to 1O2 release in Li–O2 batteries. ChemPhysChem 21, 2060–2067 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Marcus, R. A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599–610 (1993).

    Article  CAS  Google Scholar 

  45. Savéant, J.-M. Elements of Molecular and Biomolecular Electrochemistry (Wiley, 2006).

  46. Henstridge, M. C., Laborda, E., Rees, N. V. & Compton, R. G. Marcus–Hush–Chidsey theory of electron transfer applied to voltammetry: A review. Electrochim. Acta 84, 12–20 (2012).

    Article  CAS  Google Scholar 

  47. Feldberg, S. W. & Sutin, N. Distance dependence of heterogeneous electron transfer through the nonadiabatic and adiabatic regimes. Chem. Phys. 324, 216–225 (2006).

    Article  CAS  Google Scholar 

  48. Fawcett, W. R. Liquids, Solutions, and Interfaces – From Classical Macroscopic Descriptions to Modern Microscopic Details (Oxford Univ. Press, 2004).

  49. Hassoun, J., Croce, F., Armand, M. & Scrosati, B. Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angew. Chem. Int. Ed. 50, 2999–3002 (2011).

    Article  CAS  Google Scholar 

  50. Kwabi, D. G. et al. Experimental and computational analysis of the solvent-dependent O2/Li+-O2 redox couple: Standard potentials, coupling strength, and implications for lithium–oxygen batteries. Angew. Chem. Int. Ed. 55, 3129–3134 (2016).

    Article  CAS  Google Scholar 

  51. Schafzahl, B. et al. Quantifying total superoxide, peroxide, and carbonaceous compounds in metal–O2 batteries and the solid electrolyte interphase. ACS Energy Lett. 3, 170–176 (2017).

    Article  Google Scholar 

  52. Wilkinson, F., Helman, W. P. & Ross, A. B. Rate constants for the decay and reactions of the lowest electronically excited singlet-state of molecular-oxygen in solution. An expanded and revised compilation. J. Phys. Chem. Ref. Data 24, 663–1021 (1995).

    Article  CAS  Google Scholar 

  53. Petit, Y. K. et al. DABCOnium: An efficient and high-voltage stable singlet oxygen quencher for metal–O2 cells. Angew. Chem. Int. Ed. 58, 6535–6539 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.A.F. is indebted to the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 636069) as well as IST Austria. O.F thanks the French National Research Agency (STORE-EX Labex Project ANR-10-LABX-76-01). We thank EL-Cell GmbH (Hamburg, Germany) for the pressure test cell. We thank R. Saf for help with the mass spectrometry, J. Schlegl for manufacturing instrumentation, M. Winkler of Acib GmbH, G. Strohmeier and R. Fürst for HPLC measurements and S. Mondal and S. Stadlbauer for kinetic measurements.

Author information

Authors and Affiliations

Authors

Contributions

S.A.F., Y.K.P., E.M., C.P., C.L., D.M. and S.M.B. performed the experiments and analysed the results. S.B., A.W. and E.Z. did the density functional theory calculations. C.S. helped with synthesis. O.F. helped with Marcus theory. S.A.F. conceived and directed the research, set up and performed experiments, analysed the results and wrote the manuscript. All authors contributed to the discussion and interpretation of the results.

Corresponding authors

Correspondence to Olivier Fontaine or Stefan A. Freunberger.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 3O2 loss upon superoxide disproportionation in presence of RMox.

KO2 powder was immersed in 0.1 M LiTFSI/TEGDME containing 0, 0.5, 1, or 2 equivalents of the indicated RMox. One equivalent is the amount to theoretically evolve all O2 (0.5 mol RMox/mol KO2) considering 0.5 mol O2/mol KO2 to evolve from disproportionation. Equal amounts of electrolytes were used and hence the RMox concentration adapted. a, The found amounts of 3O2 relative to the total amount expected from disproportionation and oxidation for the indicated RMox. The dashed lines are quadratic polynomial fits. To prove that RMox rather than RMred drives 3O2 loss, we also used the reduced form of DMPZ. b, The data in a plotted versus the redox potential of the RMs. The trendlines are to guide the eye. See Supplementary Note 7 for in-depth discussion.

Source data

Extended Data Fig. 2 Oxidation kinetics and RMox concentration.

a, Comparision of the mediated superoxidation kinetics k2 and apparent peroxide oxidation kinetics kapp including fits with the Marcus expression in equation (5). b, 1/k which is proportional to the required RMox concentration (\(c_{{{\rm{RM}}^{{\rm{ox}}}}}\) = ν/k) to drive a certain areal oxidation rate ν = k × \(c_{{{\rm{RM}}^{{\rm{ox}}}}}\).

Source data

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–11, Notes 1–8 and References.

Supplementary Table 4

xyz-Coordinates of the structures of the three molecules (TDPA, TDPA+ and TDPA2+) optimized in methanol, 76 atoms, coordinates in Å.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petit, Y.K., Mourad, E., Prehal, C. et al. Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nat. Chem. 13, 465–471 (2021). https://doi.org/10.1038/s41557-021-00643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00643-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing