Synthesis of a zigzag carbon nanobelt


The structure-selective precise synthesis of carbon nanotubes (CNTs) has been long sought in materials science. The aromatic molecules corresponding to segment structures of CNTs, that is, carbon nanobelts (CNBs), are of interest as templates for CNT growth. Among the three types of CNB (armchair, chiral and zigzag CNBs), zigzag CNBs have been considered the most difficult type to synthesize. Here we report the synthesis, isolation and structural characterization of a zigzag CNB. The synthesis involves an iterative Diels–Alder reaction sequence followed by reductive aromatization of oxygen-bridged moieties. As predicted by theoretical calculations, this CNB was isolated as a stable compound. The structure of the zigzag CNB was fully characterized by X-ray crystallography and its wide energy gap with blue fluorescence properties was revealed by photophysical measurements. With synthetic strategies towards all three types of CNB in hand, the road to the precise synthesis of CNTs can now proceed to the next stage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Carbon nanotubes and carbon nanobelts.
Fig. 2: Molecular design and synthetic strategy of zigzag carbon nanobelt.
Fig. 3: Synthesis and structure of 1.
Fig. 4: Photophysical properties of 1.

Data availability

Materials and methods, experimental procedures, photophysical studies and NMR spectra are available in the Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 1992947 (1). Copies of the data can be obtained free of charge via Source data are provided with this paper.


  1. 1.

    Kawase, T. & Kurata, H. Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities: exploration of the concave–convex π–π interaction. Chem. Rev. 106, 5250–5273 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Tahara, K. & Tobe, Y. Molecular loops and belts. Chem. Rev. 106, 5274–5290 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    Eisenberg, D., Shenhar, R. & Rabinovitz, M. Synthetic approaches to aromatic belts: building up strain in macrocyclic polyarenes. Chem. Soc. Rev. 39, 2879–2890 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Petrukhina, M. A. & Scott, L. T. (eds) Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry (Wiley, 2012).

  5. 5.

    Segawa, Y., Yagi, A., Matsui, K. & Itami, K. Design and synthesis of carbon nanotube segments. Angew. Chem. Int. Ed. 55, 5136–5158 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Segawa, Y., Ito, H. & Itami, K. Structurally uniform and atomically precise carbon nanostructures. Nat. Rev. Mater. 1, 15002 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Schröder, A., Mekelburger, H.-B. & Vögtle, F. in Cyclophanes (ed. Weber, E.) 179–201 (Springer, 1994).

  8. 8.

    Gleiter, R., Esser, B. & Kornmayer, S. C. Cyclacenes: hoop-shaped systems composed of conjugated rings. Acc. Chem. Res. 42, 1108–1116 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Evans, P. J. & Jasti, R. in Polyarenes I (eds Siegel, J. S. & Wu, Y.-T.) 249–290 (Springer, 2014).

  10. 10.

    Segawa, Y., Yagi, A., Ito, H. & Itami, K. A theoretical study on the strain energy of carbon nanobelts. Org. Lett. 18, 1430–1433 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    CAS  Article  Google Scholar 

  12. 12.

    Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y. & Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 5, 572–576 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Povie, G., Segawa, Y., Nishihara, T., Miyauchi, Y. & Itami, K. Synthesis of a carbon nanobelt. Science 356, 172–175 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Povie, G., Segawa, Y., Nishihara, T., Miyauchi, Y. & Itami, K. Synthesis and size-dependent properties of [12], [16], and [24]carbon nanobelts. J. Am. Chem. Soc. 140, 10054–10059 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Cheung, K. Y. et al. Synthesis of armchair and chiral carbon nanobelts. Chem 5, 838–847 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    Heilbronner, E. Molecular orbitals in homologen reihen mehrkerniger aromatischer kohlenwasserstoffe: I. Die eigenwerte von LCAO‐MO’s in homologen reihen. Helv. Chim. Acta 37, 921–935 (1954).

    CAS  Article  Google Scholar 

  18. 18.

    Clar, E. The Aromatic Sextet (Wiley, 1972).

  19. 19.

    Chen, Z. et al. Open-shell singlet character of cyclacenes and short zigzag nanotubes. Org. Lett. 9, 5449–5452 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    Kohnke, F. H., Slawin, A. M. Z., Stoddart, J. F. & Williams, D. J. Molecular belts and collars in the making: a hexaepoxyoctacosahydro[12]cyclacene derivative. Angew. Chem. Int. Ed. Engl. 26, 892–894 (1987).

    Article  Google Scholar 

  21. 21.

    Ashton, P. R. et al. Molecular lego 1. Substrate-directed synthesis via stereoregular Diels–Alder oligomerizations. J. Am. Chem. Soc. 114, 6330–6353 (1992).

    CAS  Article  Google Scholar 

  22. 22.

    Cory, R. M., McPhail, C. L., Dikmans, A. J. & Vittal, J. J. Macrocyclic cyclophane belts via double Diels-Alder cycloadditions: macroannulation of bisdienes by bisdienophiles. synthesis of a key precursor to an [8]cyclacene. Tetrahedron Lett. 37, 1983–1986 (1996).

    CAS  Article  Google Scholar 

  23. 23.

    Kintzel, O., Luger, P., Weber, M. & Schlüter, A.-D. Ring-chain equilibrium between an [18]cyclacene derivative and a ladder oligomer. Eur. J. Org. Chem. 1998, 99–105 (1998).

    Article  Google Scholar 

  24. 24.

    Schulz, F. et al. Exploring a route to cyclic acenes by on-surface synthesis. Angew. Chem. Int. Ed. 58, 9038–9042 (2019).

    CAS  Article  Google Scholar 

  25. 25.

    Shi, T.-H., Guo, Q.-H., Tong, S. & Wang, M.-X. Toward the synthesis of a highly strained hydrocarbon belt. J. Am. Chem. Soc. 142, 4576–4580 (2020).

    CAS  Article  Google Scholar 

  26. 26.

    Matsui, K., Fushimi, M., Segawa, Y. & Itami, K. Synthesis, structure, and reactivity of a cylinder-shaped cyclo[12]orthophenylene[6]ethynylene: toward the synthesis of zigzag carbon nanobelts. Org. Lett. 18, 5352–5355 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Wang, J. & Miao, Q. A tetraazapentacene–pyrene belt: toward synthesis of N-doped zigzag carbon nanobelts. Org. Lett. 21, 10120–10124 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Chen, H., Gui, S., Zhang, Y., Liu, Z. & Miao, Q. Synthesis of a hydrogenated zigzag carbon nanobelt. CCS Chem. 2, 613–619 (2020).

    Google Scholar 

  29. 29.

    Esser, B., Rominger, F. & Gleiter, R. Synthesis of [6.8]3cyclacene: conjugated belt and model for an unusual type of carbon nanotube. J. Am. Chem. Soc. 130, 6716–6717 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    Narita, A. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Geuenich, D., Hess, K., Köhler, F. & Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 105, 3758–3772 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    Schleyer, Pv. R., Maerker, C., Dransfeld, A., Jiao, H. & Hommes, N. J. R. v. E. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118, 6317–6318 (1996).

    CAS  Article  Google Scholar 

  33. 33.

    Colwell, C. E., Price, T. W., Stauch, T. & Jasti, R. Strain visualization for strained macrocycles. Chem. Sci. 11, 3923–3930 (2020).

    CAS  Article  Google Scholar 

  34. 34.

    Jasti, R., Bhattacharjee, J., Neaton, J. B. & Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    Takaba, H., Omachi, H., Yamamoto, Y., Bouffard, J. & Itami, K. Selective synthesis of [12]cycloparaphenylene. Angew. Chem. Int. Ed. 48, 6112–6116 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    Neudorff, W. D., Lentz, D., Anibarro, M. & Schlüter, A. D. The carbon skeleton of the belt region of fullerene C84 (D2). Chem. Eur. J. 9, 2745–2757 (2003).

    CAS  Article  Google Scholar 

  37. 37.

    Denekamp, C. et al. Towards a fully conjugated, double-stranded cycle: a mass spectrometric and theoretical study. Chem. Eur. J. 14, 1628–1637 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    Standera, M. et al. Evidence for fully conjugated double-stranded cycles. Chem. Eur. J. 17, 12163–12174 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    Franz, D., Robbins, S. J., Boeré, R. T. & Dibble, P. W. Synthesis and characterization of 2,7-di(tert-butyl)pyreno[4,5-c:9,10-c′]difuran and derived pyrenophanes. J. Org. Chem. 74, 7544–7547 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    Murai, M., Ogita, T. & Takai, K. Regioselective arene homologation through rhenium-catalyzed deoxygenative aromatization of 7-oxabicyclo[2.2.1]hepta-2,5-dienes. Chem. Commun. 55, 2332–2335 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    Bühner, M. et al. A novel type of cationic host molecules with π-acceptor properties. Angew. Chem. Int. Ed. Engl. 27, 1553–1556 (1988).

    Article  Google Scholar 

  42. 42.

    Xu, Y. et al. Highly strained, radially π-conjugated porphyrinylene nanohoops. J. Am. Chem. Soc. 141, 18500–18507 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Han, Y., Dong, S., Shao, J., Fan, W. & Chi, C. Synthesis of a sidewall fragment of a (12,0) carbon nanotube. Angew. Chem. Int. Ed. (2020).

Download references


This work was supported by JST ERATO grant number JPMJER1302 (K.I.), JSPS KAKENHI grant numbers 19H05463 (K.I.), JP16K05771 (Y.S.), JP19H02701 (Y.S.), JP19K22183 (Y.S.) and the Murata Science Foundation (Y.S.). K.Y.C. acknowledges the Croucher Foundation Fellowship programme. K.W. acknowledges the Special Inter-University Researcher programme of the Institute for Molecular Science. We thank R. Okude and H. Shudo for assistance with the measurements, V. Gandikota, K. Matsui and K. Okada for pioneering synthetic attempts and I. A. Stepek for fruitful comments. Mass spectrometry was supported by the Toray Research Center. Calculations were performed using the resources of the Research Center for Computational Science, Okazaki, Japan. The Institute of Transformative Bio-Molecules (ITbM) is supported by the World Premier International Research Center Initiative (WPI), Japan.

Author information




K.I., Y.S. and K.Y.C. conceived the concept and directed the project. Y.S. performed the X-ray crystallography. K.Y.C. performed the experiments. K.Y.C. and K.W. performed the computational studies. All authors contributed to preparing the manuscript.

Corresponding authors

Correspondence to Yasutomo Segawa or Kenichiro Itami.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Birgit Esser, Ramesh Jasti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, discussion and Tables 1 and 2.

Supplementary Data 1

Cartesian coordinates (XYZ files) of optimized structures.

Supplementary Data 2

Source data in Microsoft Excel format for Supplementary Figs. 4 and 10a,b.

Supplementary Data 3

Raw NMR data.

Supplementary Data 4

Crystallographic data for compound 1. CCDC reference 1956026.

Source data

Source Data Fig. 4.

Source Data for Fig. 4a.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheung, K.Y., Watanabe, K., Segawa, Y. et al. Synthesis of a zigzag carbon nanobelt. Nat. Chem. (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing