Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient and stereodivergent synthesis of unsaturated acyclic fragments bearing contiguous stereogenic elements

Abstract

Synthetic organic strategies that enable the catalytic and rapid assembly of a large array of organic compounds that possess multiple stereocentres in acyclic systems are somewhat rare, especially when it comes to reaching today’s high standards of efficiency and selectivity. In particular, the catalytic preparation of a three-dimensional molecular layout of a simple acyclic hydrocarbon skeleton that possesses several stereocentres from simple and readily available reagents still represents a vastly uncharted domain. Here we report a rapid, modular, stereodivergent and diversity-oriented unified strategy to construct acyclic molecular frameworks that bear up to four contiguous and congested stereogenic elements, with remarkably high levels of stereocontrol and in only three catalytic steps from commercially available alkynes. A regio- and diastereoselective catalytic Heck migratory insertion reaction of alkenylcyclopropyl carbinols that merges selective C–C bond cleavage of a cyclopropane represents the key step.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges for the easily diversifiable and stereoselective preparation of acyclic hydrocarbon motifs.
Fig. 2: Stereoselective preparation of polysubstituted alkenylcyclopropyl carbinols 3a–3v.
Fig. 3: Oxidative Pd-catalysed Heck coupling of aryl boronic acids with alkenylcyclopropyl carbinols.
Fig. 4: Stereodivergent and selective construction of four stereoisomers of a similar scaffold.
Fig. 5: Oxidative Pd-catalysed Heck coupling of other nucleophiles with alkenylcyclopropyl carbinols and a proposed rationale as to the stereoselective migratory insertion.

Similar content being viewed by others

References

  1. Burrows, C. J. Holy grails in chemistry, part II. Acc. Chem. Res. 50, 445 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Gaich, T. & Baran, P. S. Aiming for the ideal synthesis. J. Org. Chem. 75, 4657–4673 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Burns, N. Z., Baran, P. S. & Hoffmann, R. W. Redox economy in organic synthesis. Angew. Chem. Int. Ed. 48, 2854–2867 (2009).

    Article  CAS  Google Scholar 

  4. Wender, P. A., Verma, V. A., Paxton, T. J. & Pillow, T. H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res. 41, 40–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Baran, P. S., Maimone, T. S. & Richter, J. M. Total synthesis of marine natural products without using protective groups. Nature 446, 404–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Trost, B. M. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Lovering, F., Bikker, J. & Humblet, C. Escape from the flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Böttcher, T. An additive definition of molecular complexity. J. Chem. Inf. Model. 56, 462–470 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. de Vries, J. G., Molander, G. A., Evans, P. A. Stereoselective Synthesis in Science of Synthesis (Thieme, Stuttgart, 2011).

  10. Carreira, E. & Kvaerno, L. Classics in Stereoselective Synthesis (Wiley-VCH, Weinheim, 2009).

    Google Scholar 

  11. Burns, M. et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krautwald, S., Sarlah, D., Schafroth, M. A. & Carreira, E. M. Enantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydes. Science 340, 1065–1068 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary stereocentres. Nature 516, 181–191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Das, J. P. & Marek, I. Enantioselective synthesis of all-carbon quaternary stereogenic centers in acyclic systems. Chem. Commun. 47, 4593–4623 (2011).

    Article  CAS  Google Scholar 

  15. Trost, B. M. & Jiang, C. Catalytic enantioselective construction of all-carbon quaternary stereocenters. Synthesis369–396 (2006).

  16. Douglas, C. J. & Overman, L. E. Catalytic asymmetric synthesis of all-carbon quaternary stereocenters. Proc. Natl Acad. Sci. USA 101, 5363–5367 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Corey, E. J. & Guzman-Perez, A. The catalytic enantioselective construction of molecules with quaternary stereocenters. Angew. Chem. Int. Ed. 37, 388–401 (1998).

    Article  Google Scholar 

  18. Trabocchi, A. (ed) Diversity-Oriented Synthesis: Basics and Applications in Organic Synthesis and Chemical Biology (John Wiley and Sons, Hoboken, 2013).

    Google Scholar 

  19. O’Connor, C. J., Beckmann, H. S. G. & Spring, D. R. Diversity-oriented synthesis: producing chemical tools for dissecting biology. Chem. Soc. Rev. 41, 4444–4456 (2012).

    Article  CAS  Google Scholar 

  20. Burke, M. & Schreiber, S. A planning strategy for diversely-oriented synthesis. Angew. Chem. Int. Ed. 43, 46–58 (2004).

    Article  CAS  Google Scholar 

  21. Marek, I. et al. All-carbon quaternary stereogenic centers in acyclic systems through the creation of several C–C bonds per chemical step. J. Am. Chem. Soc. 136, 2682–2694 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Kulinkovich, O. G. Cyclopropanes in Organic Synthesis (John Wiley & Sons, Hoboken, 2015).

    Book  Google Scholar 

  23. Schneider, T. F., Kaschel, J. & Werz, D. B. A new golden age for donor–acceptor cyclopropanes. Angew. Chem. Int. Ed. 53, 5504–5523 (2014).

    Article  CAS  Google Scholar 

  24. Rubin, M., Rubina, M. & Gevorgyan, V. Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev. 107, 3117–3179 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Reissig, H.-U. & Zimmer, R. Donor–acceptor-substituted cyclopropane derivatives and their applications in organic synthesis. Chem. Rev. 103, 1151–1196 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Wong, H. N. C. et al. Use of cyclopropanes and their derivatives in organic synthesis. Chem. Rev. 89, 165–198 (1989).

    Article  CAS  Google Scholar 

  27. Ebner, C. & Carreira, E. M. Cyclopropanation strategies in recent total syntheses. Chem. Rev. 117, 11651–11679 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Lebel, H., Marcoux, J.-F., Molinaro, C. & Charette, A. B. Stereoselective cyclopropanation reactions. Chem. Rev. 103, 977–1050 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Fumagalli, G., Stanton, S. & Bower, J. F. Recent methodologies that exploit C–C single bond cleavage of strained ring systems by transition metals. Chem. Rev. 117, 9404–9432 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Murakami, M. & Chatani, N. Cleavage of Carbon–Carbon Single Bonds by Transition Metals (Wiley-VCH, Weinheim, 2016).

  31. Souillart, L. & Cramer, N. Catalytic C–C bond activation via oxidative addition to transition metals. Chem. Rev. 115, 9410–9464 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Marek, I., Masarwa, A., Delaye, P.-O. & Leibeling, M. Selective carbon–carbon bond cleavage for the stereoselective synthesis of acyclic systems. Angew. Chem. Int. Ed. 54, 414–429 (2014).

    Article  CAS  Google Scholar 

  33. Dong, G. (ed) C–C Bond Activation (Springer, Berlin, 2014).

  34. Ruhland, K. Transition-metal-mediated cleavage and activation of C–C single bonds. Eur. J. Org. Chem. 2012, 2683–2706 (2012).

    Article  CAS  Google Scholar 

  35. Murakami, M. & Matsuda, T. Metal-catalysed cleavage of carbon–carbon bonds. Chem. Commun. 47, 1100–1105 (2011).

    Article  CAS  Google Scholar 

  36. Roy, S. R., Didier, D., Kleiner, A. & Marek, I. Diastereodivergent combined carbometalation/zinc homologation/C–C fragmentation reaction as an efficient tool to prepare acyclic allylic quaternary carbon stereocenters. Chem. Sci. 7, 5989–5994 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, F.-G., Eppe, G. & Marek, I. Brook rearrangement as a trigger for the ring opening of strained carbocycles. Angew. Chem. Int. Ed. 55, 714–718 (2016).

    Article  CAS  Google Scholar 

  38. Vasseur, A., Perrin, L., Eisenstein, O. & Marek, I. Remote functionalization of hydrocarbons with reversibility enhanced stereocontrol. Chem. Sci. 6, 2770–2776 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Simaan, M., Delaye, P.-O., Shi, M. & Marek, I. Cyclopropene derivatives as precursors to enantioenriched cyclopropanols and n-butenals possessing quaternary carbon stereocenters. Angew. Chem. Int. Ed. 54, 12345–12348 (2015).

    Article  CAS  Google Scholar 

  40. Masarwa, A. et al. Merging allylic carbon–hydrogen and selective carbon–carbon bond activation. Nature 505, 199–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Delaye, P.-O., Didier, D. & Marek, I. Diastereodivergent carbometalation/oxidation/selective ring opening: formation of all-carbon quaternary stereogenic centers in acyclic systems. Angew. Chem. Int. Ed. 52, 5333–5337 (2013).

    Article  CAS  Google Scholar 

  42. Simaan, S. & Marek, I. Hydroformylation reaction of alkylidenecyclopropane derivatives: a new pathway for the formation of acyclic aldehydes containing quaternary stereogenic carbons. J. Am. Chem. Soc. 132, 4066–4067 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Simaan, S., Goldberg, A. F. G., Rosset, S. & Marek, I. Metal-catalyzed ring-opening of alkylidenecyclopropanes: new access to building blocks with an acyclic quaternary stereogenic center. Chem. Eur. J. 16, 774–778 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Singh, S., Bruffaerts, J., Vasseur, A. & Marek, I. A unique Pd-catalysed Heck arylation as a remote trigger for cyclopropane selective ring-opening. Nat. Commun. 8, 14200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oestreich, M. Directed Mizoroki–Heck reactions. Top. Organomet. Chem. 24, 169–192 (2007).

    Article  CAS  Google Scholar 

  46. Katsuda, Y. Progress and future in pyrethroids. Top. Curr. Chem. 314, 1–30 (2012).

    CAS  PubMed  Google Scholar 

  47. Jiao, L. & Yu, X. Vinylcyclopropane derivatives in transition-metal-catalyzed cycloadditions for the synthesis of carbocyclic compounds. J. Org. Chem. 78, 6842–6848 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Müller, D. S. et al. Tandem hydroalumination/Cu-catalyzed asymmetric vinyl metalation as a new access to enantioenriched vinylcyclopropane derivatives. Org. Lett. 19, 3970–3973 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Dian, L., Müller, D. S. & Marek, I. Asymmetric copper-catalyzed carbomagnesiation of cyclopropenes. Angew. Chem. Int. Ed. 56, 6783–6787 (2017).

    Article  CAS  Google Scholar 

  50. Lou, M. et al. A new chiral Rh(ii) catalyst for enantioselective [2+1]-cycloaddition. Mechanistic implications and applications. J. Am. Chem. Soc. 126, 8916–8918 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Didier, D. et al. Modulable and highly diastereoselective carbometalations of cyclopropenes. Chem. Eur. J. 20, 1038–1048 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Mei, T.-S., Werner, E. W., Burckle, A. J. & Sigman, M. S. Enantioselective redox-relay oxidative Heck arylations of acyclic alkenyl alcohols using boronic acids. J. Am. Chem. Soc. 135, 6830–6833 (2015).

    Article  CAS  Google Scholar 

  53. Mei, T.-S., Patel, H. H. & Sigman, M. S. Enantioselective construction of remote quaternary stereocentres. Nature 508, 340–344 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Patel, H. H. & Sigman, M. S. Enantioselective palladium-catalyzed alkenylation of trisubstituted alkenols to form allylic quaternary centers. J. Am. Chem. Soc. 138, 14226–14229 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, C., Santiago, S. B., Crawford, J. M. & Sigman, M. S. Enantioselective dehydrogenative Heck arylations of trisubstituted alkenes with indoles to construct quaternary stereocenters. J. Am. Chem. Soc. 137, 15668–15671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Le Bras, J. & Muzart, J. Intermolecular dehydrogenative Heck reactions. Chem. Rev. 111, 1170–1214 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Larionov, E., Lin, L., Guénée, L. & Mazet, C. Scope and mechanism in palladium-catalyzed isomerizations of highly substituted allylic, homoallylic, and alkenyl alcohols. J. Am. Chem. Soc. 136, 16882–16894 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Dang, Y., Qu, S., Wang, Z.-X. & Wang, X. A computational mechanistic study of an unprecedented Heck-type relay reaction: insight into the origins of regio- and enantioslectivities. J. Am. Chem. Soc. 136, 986–998 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Xu, L. et al. Mechanism, reactivity, and selectivity in palladium-catalyzed redox relay Heck arylations of alkenyl alcohols. J. Am. Chem. Soc. 136, 1960–1967 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hilton, M. J. et al. Investigating the nature of palladium chain-walking in the enantioselective redox-relay Heck reaction of alkenyl alcohols. J. Org. Chem. 79, 11841–11850 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin, L., Romano, C. & Mazet, C. Palladium-catalyzed long-range deconjugative isomerization of highly substituted α,β-unsaturated carbonyl compounds. J. Am. Chem. Soc. 138, 10344–10350 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Dupuy, S. et al. Selective functionalization of alkyl chains by regioconvergent cross-coupling. Angew. Chem. Int. Ed. 55, 14793–14797 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Israel Science Foundation administrated by the Israel Academy of Sciences and Humanities (330/17) and by the European Research Council under the European Community’s Seventh Framework Program (ERC grant agreement no. 338912). I.M. is holder of the Sir Michael and Lady Sobell Academic Chair.

Author information

Authors and Affiliations

Authors

Contributions

J.B., D.P. and I.M. planned the research. J.B. and D.P. conducted and analysed experiments. I.M. directed the project, and wrote the manuscript with contributions from J.B. and D.P. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ilan Marek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Detailed experimental procedures with full descriptions of all molecules and complete NMR data of all new compounds

Crystallographic data

CIF for compound 6a; CCDC reference: 1813305

Crystallographic data

CIF for compound 6b; CCDC reference: 1813312

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruffaerts, J., Pierrot, D. & Marek, I. Efficient and stereodivergent synthesis of unsaturated acyclic fragments bearing contiguous stereogenic elements. Nature Chem 10, 1164–1170 (2018). https://doi.org/10.1038/s41557-018-0123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0123-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing