Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Total synthesis of nine longiborneol sesquiterpenoids using a functionalized camphor strategy

Abstract

Natural product total synthesis inspires the development of synthesis strategies to access important classes of molecules. In the 1960s, Corey and coworkers demonstrated a visionary preparation of the terpenoid longifolene, using ‘strategic bond analysis’ to craft a synthesis route. This approach proposes that efficient synthesis routes to bridged, polycyclic structures should be formulated to introduce the bulk of the target’s topological complexity at a late stage. Subsequently, similar strategies have proved general for the syntheses of a wide variety of bridged, polycyclic molecules. Here, we demonstrate that an orthogonal strategy where topological complexity is introduced at the outset leads to the short synthesis of the longifolene-related terpenoid longiborneol. To implement this strategy, we access a bicyclo[2.2.1] starting material through scaffold remodelling of readily available (S)-carvone. We also employ a variety of late-stage C–H functionalization tactics in divergent syntheses of many longiborneol congeners. Our strategy may prove effective for the preparation of other topologically complex natural products that contain the bicyclo[2.2.1] framework.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Retrosynthetic approaches to longifolene and longiborneol.
Fig. 2: Structurally similar natural products and retrosynthesis of longiborneol.
Fig. 3: Total synthesis of longiborneol.
Fig. 4: Syntheses of oxygenated longiborneol congeners.
Fig. 5: Camphor derivatives accessible by scaffold remodelling of (S)-carvone.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2060682 (11) and 2060683 (10). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. The experimental procedures and characterization of all compounds are provided in the Supplementary Information.

References

  1. Brill, Z. G., Condakes, M. L., Ting, C. P. & Maimone, T. J. Navigating the chiral pool in the total synthesis of complex terpene natural products. Chem. Rev. 117, 11753–11795 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Corey, E. J., Ohno, M., Vatakencherry, P. A. & Mitra, R. B. Total synthesis of d,l-longifolene. J. Am. Chem. Soc. 83, 1251–1253 (1961).

    Article  CAS  Google Scholar 

  3. Corey, E. J., Ohno, Masaji, Mitra, R. B. & Vatakencherry, P. A. Total synthesis of longifolene. J. Am. Chem. Soc. 86, 478–485 (1964).

    Article  CAS  Google Scholar 

  4. Corey, E. J., Howe, W. J., Orf, H. W., Pensak, D. A. & Petersson, G. General methods of synthetic analysis. Strategic bond disconnections for bridged polycyclic structures. J. Am. Chem. Soc. 97, 6116–6124 (1975).

    Article  CAS  Google Scholar 

  5. Boger, D. L. in Modern Organic Synthesis Lecture Notes (ed. Garbaccio, R. M.) 443–460 (TSRI Press, 1999).

  6. Doering, N. A., Sarpong, R. & Hoffmann, R. W. A case for bond-network analysis in the synthesis of bridged polycyclic complex molecules: hetidine and hetisine diterpenoid alkaloids. Angew. Chem. Int. Ed. 59, 10722–10731 (2020).

    Article  CAS  Google Scholar 

  7. Marth, C. J. et al. Network-analysis-guided synthesis of weisaconitine D and liljestrandinine. Nature 528, 493–498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haider, M., Sennari, G., Eggert, A. & Sarpong, R. Total synthesis of the cephalotaxus norditerpenoids (±)-cephanolides A–D. J. Am. Chem. Soc. 143, 2710–2715 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Matsuo, A., Nakayama, M. & Hayashi, S. Chemical proof of enantiomeric (−)-longiborneol. Chem. Lett. 2, 769–772 (1973).

    Article  Google Scholar 

  10. Takasu, K., Mizutani, S., Noguchi, M., Makita, K. & Ihara, M. Stereocontrolled total synthesis of (±)-culmorin via the intramolecular double Michael addition. Org. Lett. 1, 391–394 (1999).

    Article  CAS  Google Scholar 

  11. Takasu, K., Mizutani, S., Noguchi, M., Makita, K. & Ihara, M. Total synthesis of (±)-culmorin and (±)-longiborneol: an efficient construction of tricyclo[6.3.0.03,9]undecan-10-one by intramolecular double Michael addition. J. Org. Chem. 65, 4112–4119 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Kuo, D. L. & Money, T. An enantiospecific synthesis of longiborneol and longifolene. J. Chem. Soc. Chem. Commun. 0, 1691–1692 (1986).

    Article  CAS  Google Scholar 

  13. Kuo, D. L. & Money, T. Enantiospecific synthesis of longiborneol and longifolene. Can. J. Chem. 66, 1794–1804 (1988).

    Article  CAS  Google Scholar 

  14. Masarwa, A., Weber, M. & Sarpong, R. Selective C–C and C–H bond activation/cleavage of pinene derivatives: synthesis of enantiopure cyclohexenone scaffolds and mechanistic insights. J. Am. Chem. Soc. 137, 6327–6334 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Weber, M., Owens, K., Masarwa, A. & Sarpong, R. Construction of enantiopure taxoid and natural product-like scaffolds using a C–C bond cleavage/arylation reaction. Org. Lett. 17, 5432–5435 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Kuroda, Y. et al. Isolation, synthesis and bioactivity studies of phomactin terpenoids. Nat. Chem. 10, 938–945 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Kerschgens, I., Rovira, A. R. & Sarpong, R. Total synthesis of (−)-xishacorene B from (R)-carvone using a C–C activation strategy. J. Am. Chem. Soc. 140, 9810–9813 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Bahadoor, A. et al. Hydroxylation of longiborneol by a Clm2-encoded CYP450 monooxygenase to produce culmorin in Fusarium graminearum. J. Nat. Prod. 79, 81–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Ashley, J. N., Hobbs, B. C. & Raistrick, H. Studies in the biochemistry of micro-organisms: the crystalline colouring matters of Fusarium culmorum (W. G. Smith) Sacc. and related forms. Biochem. J. 31, 385–397 (1937).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alam, M., Jones, E. B. G., Hossain, M. B. & van der Helm, D. Isolation and structure of isoculmorin from the marine fungus Kallichroma tethys. J. Nat. Prod. 59, 454–456 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Kasitu, G. C. et al. Isolation and characterization of culmorin derivatives produced by Fusariumculmorum CMI 14764. Can. J. Chem. 70, 1308–1316 (1992).

    Article  CAS  Google Scholar 

  22. Chen, K. & Baran, P. S. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature 459, 824–828 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. White, M. C. & Zhao, J. Aliphatic C–H oxidations for late-stage functionalization. J. Am. Chem. Soc. 140, 13988–14009 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma, X., Kucera, R., Goethe, O. F., Murphy, S. K. & Herzon, S. B. Directed C–H bond oxidation of (+)-pleuromutilin. J. Org. Chem. 83, 6843–6892 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Qiu, Y. & Gao, S. Trends in applying C–H oxidation to the total synthesis of natural products. Nat. Prod. Rep. 33, 562–581 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Welch, S. C. & Walters, R. L. Total syntheses of (+)-longicamphor and (+)-longiborneol. Synth. Commun. 3, 419–423 (1973).

    Article  CAS  Google Scholar 

  28. Welch, S. C. & Walters, R. L. Stereoselective total syntheses of (±)-longicyclene, (±)-longicamphor, and (±)-longiborneol. J. Org. Chem. 39, 2665–2673 (1974).

    Article  CAS  Google Scholar 

  29. Wittig, G. & Schöllkopf, U. Über triphenyl-phosphin-methylene als olefinbildende reagenzien (I. Mitteil. Chem. Ber. 87,1318–1330 (1954).

  30. Bermejo, F. A. et al. Ti(III)-promoted cyclizations. Application to the synthesis of (E)-endo-bergamoten-12-oic acids. Moth oviposition stimulants isolated from Lycopersicon hirsutum. Tetrahedron 62, 8933–8942 (2006).

    Article  CAS  Google Scholar 

  31. Song, Z.-L., Fan, C.-A. & Tu, Y.-Q. Semipinacol rearrangement in natural product synthesis. Chem. Rev. 111, 7523–7556 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Ikan, R., Markus, A. & Bergmann, E. D. The synthesis of 22-trans-cholesta-5,22,25-trien-3β OL. Isr. J. Chem. 9, 259–261 (1971).

    Article  CAS  Google Scholar 

  33. Huang, Q., Suravarapu, S. R. & Renaud, P. A Giese reaction for electron-rich alkenes. Chem. Sci. https://doi.org/10.1039/D0SC06341J (2021).

  34. Song, H.-J., Lim, C. J., Lee, S. & Kim, S. Tin-free radical alkylation of ketones via N-silyloxy enamines. Chem. Commun. 2893–2895 (2006).

  35. Lee, J. Y., Lim, K.-C., Meng, X. & Kim, S. Radical alkylations of alkyl halides and unactivated C-H bonds using vinyl triflates. Synlett 2010, 1647–1650 (2010).

    Article  Google Scholar 

  36. Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 28, 25–35 (1999).

    Article  CAS  Google Scholar 

  37. Crossley, S. W. M., Barabé, F. & Shenvi, R. A. Simple, chemoselective, catalytic olefin isomerization. J. Am. Chem. Soc. 136, 16788–16791 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fu, M.-C., Shang, R., Zhao, B., Wang, B. & Fu, Y. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. Science 363, 1429–1434 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Lo, J. C., Gui, J., Yabe, Y., Pan, C.-M. & Baran, P. S. Functionalized olefin cross-coupling to construct carbon–carbon bonds. Nature 516, 343–348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leggans, E. K., Barker, T. J., Duncan, K. K. & Boger, D. L. Iron(III)/NaBH4-mediated additions to unactivated alkenes: synthesis of novel 20′-vinblastine analogues. Org. Lett. 14, 1428–1431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lo, J. C., Yabe, Y. & Baran, P. S. A practical and catalytic reductive olefin coupling. J. Am. Chem. Soc. 136, 1304–1307 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Isayama, S. & Mukaiyama, T. A new method for preparation of alcohols from olefins with molecular oxygen and phenylsilane by the use of bis(acetylacetonato)cobalt(II). Chem. Lett. 18, 1071–1074 (1989).

    Article  Google Scholar 

  43. Concepción, J. I., Francisco, C. G., Hernández, R., Salazar, J. A. & Suárez, E. Intramolecular hydrogen abstraction. Iodosobenzene diacetate, an efficient and convenient reagent for alkoxy radical generation. Tetrahedron Lett. 25, 1953–1956 (1984).

    Article  Google Scholar 

  44. Nakazaki, M. & Naemura, K. Photolyses of isobornyl and bornyl nitrites. Bull. Chem. Soc. Jpn 37, 532–535 (1964).

    Article  CAS  Google Scholar 

  45. Renata, H., Zhou, Q. & Baran, P. S. Strategic redox relay enables a scalable synthesis of ouabagenin, a bioactive cardenolide. Science 339, 59–63 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berger, M., Knittl-Frank, C., Bauer, S., Winter, G. & Maulide, N. Application of relay C−H oxidation logic to polyhydroxylated oleanane triterpenoids. Chem 6, 1183–1189 (2020).

    Article  CAS  Google Scholar 

  47. Desai, L. V., Hull, K. L. & Sanford, M. S. Palladium-catalyzed oxygenation of unactivated sp3 C−H bonds. J. Am. Chem. Soc. 126, 9542–9543 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Neufeldt, S. R. & Sanford, M. S. O-acetyl oximes as transformable directing groups for Pd-catalyzed C−H bond functionalization. Org. Lett. 12, 532–535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Caglioti, L. & Magi, M. The reaction of tosylhydrazones with lithium aluminium hydride. Tetrahedron 19, 1127–1131 (1963).

    Article  CAS  Google Scholar 

  50. Simmons, E. M. & Hartwig, J. F. Catalytic functionalization of unactivated primary C–H bonds directed by an alcohol. Nature 483, 70–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Li, B., Driess, M. & Hartwig, J. F. Iridium-catalyzed regioselective silylation of secondary alkyl C–H bonds for the synthesis of 1,3-diols. J. Am. Chem. Soc. 136, 6586–6589 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Tamao, K., Ishida, N. & Kumada, M. (Diisopropoxymethylsilyl)methyl Grignard reagent: a new, practically useful nucleophilic hydroxymethylating agent. J. Org. Chem. 48, 2120–2122 (1983).

    Article  CAS  Google Scholar 

  53. Fleming, I., Henning, R. & Plaut, H. The phenyldimethylsilyl group as a masked form of the hydroxy group. J. Chem. Soc. Chem. Commun. 29–31 (1984).

  54. Chen, M. S. & White, M. C. A predictably selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318, 783–787 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Curci, R., D’Accolti, L. & Fusco, C. A novel approach to the efficient oxygenation of hydrocarbons under mild conditions. Superior oxo transfer selectivity using dioxiranes. Acc. Chem. Res. 39, 1–9 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Institutes of Health (NIGMS MIRA R35 GM130345) for grant support as well as the Molecular Scaffold Design Collective (agreement no. HR00111890024) of the Defense Advanced Research Projects Agency for partial support of this work. R.F.L. is grateful for fellowship support from the National Science Foundation Graduate Research Fellowships Program (DGE 1752814). G.S. thanks the Uehara Memorial Foundation for a postdoctoral fellowship. We thank H. Celik and University of California, Berkeley’s NMR facility in the College of Chemistry (CoC-NMR) for spectroscopic assistance. Instruments in the CoC-NMR are supported in part by National Institutes of Health S10OD024998. We thank N. Settineri (University of California, Berkeley) for single-crystal X-ray diffraction studies.

Author information

Authors and Affiliations

Authors

Contributions

The overall design for this project was conceptualized by G.S. with input from R.F.L. and R.S.; R.F.L. and G.S. conducted the chemical reactions. G.S. and R.F.L. developed the synthesis of 15 and 3, and G.S. optimized the route. Syntheses of 5 and 1014 were achieved by R.F.L., who also designed the C–H functionalization sequences with input from G.S. and R.S. Rearrangement of 3 to 1 as well as preparation of 38 and 41 were discovered by G.S. The manuscript was written and edited jointly by R.F.L., G.S. and R.S.

Corresponding authors

Correspondence to Goh Sennari or Richmond Sarpong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Kiyosei Takasu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1–8, experimental procedures, NMR data and crystallographic data.

Supplementary Data 1

Crystallographic data for compound 10; CCDC reference 2060683.

Supplementary Data 2

Crystallographic data for compound 11; CCDC reference 2060682.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lusi, R.F., Sennari, G. & Sarpong, R. Total synthesis of nine longiborneol sesquiterpenoids using a functionalized camphor strategy. Nat. Chem. 14, 450–456 (2022). https://doi.org/10.1038/s41557-021-00870-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00870-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing