Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Accelerating data sharing and reuse in volume electron microscopy

Volume electron microscopy (vEM) generates large 3D volumes of cells or tissues at nanoscale resolutions, enabling analyses of organelles in their cellular environment. Here, we provide examples of vEM in cell biology and discuss community efforts to develop standards in sample preparation and image acquisition for enhanced reproducibility and data reuse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples illustrating the power of vEM.
Fig. 2: Comparison of vEM platforms.
Fig. 3: Examples of structures for volumetric analysis.
Fig. 4: Map of core facilities offering vEM services.

Data availability

vEM datasets and segmentation models have been deposited in EMPIAR: U2-OS cell (EMPIAR-11746; https://doi.org/10.6019/EMPIAR-11746), N. tabacum leaf mesophyll cell (EMPIAR-11831; https://doi.org/10.6019/EMPIAR-11831) and GM130 labelling on Huh-7 cell (EMPIAR-11849; https://doi.org/10.6019/EMPIAR-11849). Sample preparation for heavy contrasting is described in detail in Zenodo (https://doi.org/10.5281/zenodo.10024014) and later in the EMPIAR Sample Preparation Widget. Extended animations of Fig. 1e–h, Fig. 3a–c and Supplementary Video 1 have been uploaded to Zenodo (https://doi.org/10.5281/zenodo.10024014). Workflows for image segmentation of a U2-OS cell have been uploaded to Zenodo (https://doi.org/10.5281/zenodo.10043460).

References

  1. Peddie, C. J. et al. Nat. Rev. Methods Primers 2, 51 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abbott, L. F. et al. Cell 182, 1372–1376 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Puhka, M., Joensuu, M., Vihinen, H., Belevich, I. & Jokitalo, E. Mol. Biol. Cell 23, 2424–2432 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cortese, M. et al. Cell Host Microbe 28, 853–866 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lerner, T. R. et al. J. Clin. Investig. 126, 1093–1108 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lucocq, J. M., Mayhew, T. M., Schwab, Y., Steyer, A. M. & Hacker, C. Trends Cell Biol. 25, 59–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Heiligenstein, X. & Lucas, M. S. Front. Cell Dev. Biol. 10, 866472 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fu, Z. et al. Nat. Methods 17, 55–58 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, G. H. et al. Structure 28, 1231–1237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Narayan, K. & Conrad, R. W. EMPIAR https://doi.org/10.6019/EMPIAR-10982 (2022).

    Article  Google Scholar 

  11. Sarkans, U. et al. Nat. Methods 18, 1418–1422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iudin, A. et al. STAR Protoc. 2, 100253 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moore, J. et al. Nat. Methods 18, 1496–1498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deerinck, T. J., Bushong, E. A., Thor, A. & Ellisman, M. H. NCMIR methods for 3D EM: a new protocol for preparation of biological specimens for serial block face scanning electron microscopy. National Center for Microscopy and Imaging Research https://ncmir.ucsd.edu/sbem-protocol (2010).

Download references

Acknowledgements

K.J.C. at the Danforth Center Advanced Bioimaging Laboratory (RRID:SCR_018951) was supported by the Chan Zuckerberg Initiative no. DAF2023-321243 and the US Department of Energy BER DE-SC0020348. The work of L.C. was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (CC1076), the UK Medical Research Council (CC1076) and the Wellcome Trust (CC1076). E.J. was supported by the Research Council of Finland (1331998) and Electron Microscopy Unit of the Institute of Biotechnology. E.J. and I.B. were supported by Biocenter Finland and Helsinki Institute of Life Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eija Jokitalo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Feng-Xia Liang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Extended data

Supplementary information

Reporting Summary

Supplementary Video

An animation of human bone osteosarcoma epithelial cell (U2-OS) starting with volume rendering of FIB-SEM dataset and showing models of mitochondria (green), nuclear envelope (light blue), peroxisomes (light yellow), lysosomes (purple), lipid droplets (red), endoplasmic reticulum (yellow) and Golgi complex (dark blue). The extended version showing an additional sequence of block-face images can be viewed from Zenodo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czymmek, K.J., Belevich, I., Bischof, J. et al. Accelerating data sharing and reuse in volume electron microscopy. Nat Cell Biol 26, 498–503 (2024). https://doi.org/10.1038/s41556-024-01381-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-024-01381-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing