Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid droplets and cellular lipid flux

Abstract

Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ER neutral lipid flux and LD biogenesis.
Fig. 2: Accessing stored lipids: lipolysis and lipophagy.
Fig. 3: Tethers and lipid transfer proteins at LD membrane contact sites.
Fig. 4: Lipid flux and lipotoxicity.

Similar content being viewed by others

References

  1. Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Farese, R. V. & Walther, T. C. Glycerolipid synthesis and lipid droplet formation in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 15, a041246 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Zadoorian, A., Du, X. & Yang, H. Lipid droplet biogenesis and functions in health and disease. Nat. Rev. Endocrinol. 19, 443–459 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Petan, T. Lipid droplets in cancer. Rev. Physiol. Biochem Pharm. 185, 53–86 (2023).

  5. Ralhan, I., Chang, C.-L., Lippincott-Schwartz, J. & Ioannou, M. S. Lipid droplets in the nervous system. J. Cell Biol. 220, e202102136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bosch, M., Sweet, M. J., Parton, R. G. & Pol, A. Lipid droplets and the host–pathogen dynamic: FATal attraction? J. Cell Biol. 220, e202104005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Papsdorf, K. et al. Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids. Nat. Cell Biol. 25, 672–684 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar, A. V. et al. Lipid droplets modulate proteostasis, SQST-1/SQSTM1 dynamics, and lifespan in C. elegans. iScience 26, 107960 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Roberts, M. A. & Olzmann, J. A. Protein quality control and lipid droplet metabolism. Annu. Rev. Cell Dev. Biol. 36, 115–139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dumesnil, C. et al. Cholesterol esters form supercooled lipid droplets whose nucleation is facilitated by triacylglycerols. Nat. Commun. 14, 915 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mahamid, J. et al. Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proc. Natl Acad. Sci. USA 116, 16866–16871 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rogers, S. et al. Triglyceride lipolysis triggers liquid crystalline phases in lipid droplets and alters the LD proteome. J. Cell Biol. 221, e202205053 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Henne, W. M. The (social) lives, deaths, and biophysical phases of lipid droplets. Curr. Opin. Cell Biol. 82, 102178 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sui, X. et al. Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme. Nature 581, 323–328 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, L. et al. Structure and mechanism of human diacylglycerol O-acyltransferase 1. Nature 581, 329–332 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. McLelland, G.-L. et al. Identification of an alternative triglyceride biosynthesis pathway. Nature 621, 171–178 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thiam, A. R. & Ikonen, E. Lipid droplet nucleation. Trends Cell Biol. 31, 108–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Walther, T. C., Kim, S., Arlt, H., Voth, G. A. & Farese, R. V. Structure and function of lipid droplet assembly complexes. Curr. Opin. Struct. Biol. 80, 102606 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, H. et al. Seipin is required for converting nascent to mature lipid droplets. eLife 5, e16582 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Salo, V. T. et al. Seipin facilitates triglyceride flow to lipid droplet and counteracts droplet ripening via endoplasmic reticulum contact. Dev. Cell 50, 478–493.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Sui, X. et al. Cryo-electron microscopy structure of the lipid droplet-formation protein seipin. J. Cell Biol. 217, 4080–4091 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yan, R. et al. Human SEIPIN binds anionic phospholipids. Dev. Cell 47, 248–256.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Arlt, H. et al. Seipin forms a flexible cage at lipid droplet formation sites. Nat. Struct. Mol. Biol. 29, 194–202 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klug, Y. A. et al. Mechanism of lipid droplet formation by the yeast Sei1/Ldb16 Seipin complex. Nat. Commun. 12, 5892 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, S. et al. Seipin transmembrane segments critically function in triglyceride nucleation and lipid droplet budding from the membrane. eLife 11, e75808 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zoni, V. et al. Seipin accumulates and traps diacylglycerols and triglycerides in its ring-like structure. Proc. Natl Acad. Sci. USA 118, e2017205118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prasanna, X. et al. Seipin traps triacylglycerols to facilitate their nanoscale clustering in the endoplasmic reticulum membrane. PLoS Biol. 19, e3000998 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chorlay, A. et al. Membrane asymmetry imposes directionality on lipid droplet emergence from the ER. Dev. Cell 50, 25–42.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Ben M’barek, K. et al. ER membrane phospholipids and surface tension control cellular lipid droplet formation. Dev. Cell 41, 591–604.e7 (2017).

    Article  PubMed  Google Scholar 

  30. Jiang, X. et al. Lack of VMP1 impairs hepatic lipoprotein secretion and promotes non-alcoholic steatohepatitis. J. Hepatol. 77, 619–631 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Y. E. et al. TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. J. Cell Biol. 220, e202103105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morishita, H. et al. A critical role of VMP1 in lipoprotein secretion. eLife 8, e48834 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, D. et al. TMEM41B acts as an ER scramblase required for lipoprotein biogenesis and lipid homeostasis. Cell Metab. 33, 1655–1670.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Mailler, E. et al. The autophagy protein ATG9A enables lipid mobilization from lipid droplets. Nat. Commun. 12, 6750 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chung, J. et al. LDAF1 and seipin form a lipid droplet assembly complex. Dev. Cell 51, 551–563.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Castro, I. G. et al. Promethin is a conserved seipin partner protein. Cells 8, 268 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Joshi, A. S. et al. Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nat. Commun. 9, 2940 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Joshi, A. S., Ragusa, J. V., Prinz, W. A. & Cohen, S. Multiple C2 domain–containing transmembrane proteins promote lipid droplet biogenesis and growth at specialized endoplasmic reticulum subdomains. Mol. Biol. Cell 32, 1147–1157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferreira, J. V. & Carvalho, P. Pex30-like proteins function as adaptors at distinct ER membrane contact sites. J. Cell Biol. 220, e202103176 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Santinho, A. et al. Membrane curvature catalyzes lipid droplet assembly. Curr. Biol. 30, 2481–2494.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Renne, M. F., Corey, R. A., Ferreira, J. V., Stansfeld, P. J. & Carvalho, P. Seipin concentrates distinct neutral lipids via interactions with their acyl chain carboxyl esters. J. Cell Biol. 221, e202112068 (2022).

  42. Molenaar, M. R. et al. Retinyl esters form lipid droplets independently of triacylglycerol and seipin. J. Cell Biol. 220, e202011071 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sołtysik, K. et al. Nuclear lipid droplets form in the inner nuclear membrane in a seipin-independent manner. J. Cell Biol. 220, e202005026 (2021).

    Article  PubMed  Google Scholar 

  44. Olarte, M.-J., Swanson, J. M. J., Walther, T. C. & Farese, R. V. The CYTOLD and ERTOLD pathways for lipid droplet–protein targeting. Trends Biochem. Sci. 47, 39–51 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Wilfling, F. et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 24, 384–399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Song, J. et al. Identification of two pathways mediating protein targeting from ER to lipid droplets. Nat. Cell Biol. 24, 1364–1377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schrul, B. & Kopito, R. R. Peroxin-dependent targeting of a lipid-droplet-destined membrane protein to ER subdomains. Nat. Cell Biol. 18, 740–751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Olzmann, J. A., Richter, C. M. & Kopito, R. R. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc. Natl Acad. Sci. USA 110, 1345–1350 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Olarte, M.-J. et al. Determinants of endoplasmic reticulum-to-lipid droplet protein targeting. Dev. Cell 54, 471–487.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boeszoermenyi, A. et al. Structure of a CGI-58 motif provides the molecular basis of lipid droplet anchoring. J. Biol. Chem. 290, 26361–26372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grabner, G. F., Xie, H., Schweiger, M. & Zechner, R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 3, 1445–1465 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Schott, M. B., Rozeveld, C. N., Weller, S. G. & McNiven, M. A. Lipophagy at a glance. J. Cell Sci. 135, jcs259402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Soni, K. G. et al. Coatomer-dependent protein delivery to lipid droplets. J. Cell Sci. 122, 1834–1841 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilfling, F. et al. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. eLife 3, e01607 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Beller, M. et al. COPI complex is a regulator of lipid homeostasis. PLoS Biol. 6, e292 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zechner, R., Madeo, F. & Kratky, D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat. Rev. Mol. Cell Biol. 18, 671–684 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Lass, A. et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab. 3, 309–319 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Kimmel, A. R. & Sztalryd, C. The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu. Rev. Nutr. 36, 471–509 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Granneman, J. G., Moore, H.-P. H., Mottillo, E. P., Zhu, Z. & Zhou, L. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J. Biol. Chem. 286, 5126–5135 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Yang, A., Mottillo, E. P., Mladenovic-Lucas, L., Zhou, L. & Granneman, J. G. Dynamic interactions of ABHD5 with PNPLA3 regulate triacylglycerol metabolism in brown adipocytes. Nat. Metab. 1, 560–569 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, Y., Kory, N., BasuRay, S., Cohen, J. C. & Hobbs, H. H. PNPLA3, CGI-58, and inhibition of hepatic triglyceride hydrolysis in mice. Hepatology 69, 2427–2441 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Sanders, M. A. et al. Endogenous and synthetic ABHD5 ligands regulate ABHD5-perilipin interactions and lipolysis in fat and muscle. Cell Metab. 22, 851–860 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, X. et al. The G0/G1 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab. 11, 194–205 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. DiStefano, M. T. et al. The lipid droplet protein hypoxia-inducible gene 2 promotes hepatic triglyceride deposition by inhibiting lipolysis. J. Biol. Chem. 290, 15175–15184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tseng, Y. Y. et al. Structural and functional insights into ABHD5, a ligand-regulated lipase co-activator. Sci. Rep. 12, 2565 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kulminskaya, N. et al. Unmasking crucial residues in adipose triglyceride lipase for coactivation with comparative gene identification-58. J. Lipid. Res. 65, 100491 (2024).

  67. Kohlmayr, J. M. et al. Mutational scanning pinpoints distinct binding sites of key ATGL regulators in lipolysis. Preprint at bioRxiv https://doi.org/10.1101/2023.05.10.540188 (2023)

  68. Mayer, N. et al. Development of small-molecule inhibitors targeting adipose triglyceride lipase. Nat. Chem. Biol. 9, 785–787 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Schott, M. B. et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J. Cell Biol. 218, 3320–3335 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chung, J. et al. The Troyer syndrome protein spartin mediates selective autophagy of lipid droplets. Nat. Cell Biol. 25, 1101–1110 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Herker, E., Vieyres, G., Beller, M., Krahmer, N. & Bohnert, M. Lipid droplet contact sites in health and disease. Trends Cell Biol. 31, 345–358 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Prinz, W. A., Toulmay, A. & Balla, T. The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Wong, L. H., Gatta, A. T. & Levine, T. P. Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat. Rev. Mol. Cell Biol. 20, 85–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Hanna, M., Guillén-Samander, A. & De Camilli, P. RBG motif bridge-like lipid transport proteins: structure, functions, and open questions. Annu. Rev. Cell Dev. Biol. 39, 409–434 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Du, X. et al. ORP5 localizes to ER-lipid droplet contacts and regulates the level of PI(4)P on lipid droplets. J. Cell Biol. 219, e201905162 (2020).

    Article  PubMed  Google Scholar 

  76. Guyard, V. et al. ORP5 and ORP8 orchestrate lipid droplet biogenesis and maintenance at ER–mitochondria contact sites. J. Cell Biol. 221, e202112107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Olkkonen, V. M., Koponen, A. & Arora, A. OSBP-related protein 2 (ORP2): unraveling its functions in cellular lipid/carbohydrate metabolism, signaling and F-actin regulation. J. Steroid Biochem. Mol. Biol. 192, 105298 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, T. et al. OSBPL2 is required for the binding of COPB1 to ATGL and the regulation of lipid droplet lipolysis. iScience 23, 101252 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Velikkakath, A. K. G., Nishimura, T., Oita, E., Ishihara, N. & Mizushima, N. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell 23, 896–909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Korfhage, J. L. et al. ATG2A-mediated bridge-like lipid transport regulates lipid droplet accumulation. Preprint at bioRxiv https://doi.org/10.1101/2023.08.14.553257 (2023)

  81. Bersuker, K. et al. A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev. Cell 44, 97–112.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Yeshaw, W. M. et al. Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. eLife 8, e43561 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kumar, N. et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217, 3625–3639 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, S. et al. VPS13A and VPS13C influence lipid droplet abundance. Contact 5, 25152564221125613 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ghanbarpour, A., Valverde, D. P., Melia, T. J. & Reinisch, K. M. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proc. Natl Acad. Sci. USA 118, e2101562118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Van Vliet, A. R. et al. ATG9A and ATG2A form a heteromeric complex essential for autophagosome formation. Mol. Cell 82, 4324–4339.e8 (2022).

    Article  PubMed  Google Scholar 

  87. Matoba, K. et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185–1193 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, H. et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J. Lipid Res. 52, 2159–2168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Miner, G. E. et al. PLIN5 interacts with FATP4 at membrane contact sites to promote lipid droplet-to-mitochondria fatty acid transport. Dev. Cell 58, 1250–1265.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Hariri, H. et al. Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. J. Cell Biol. 218, 1319–1334 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jägerström, S. et al. Lipid droplets interact with mitochondria using SNAP23. Cell Biol. Int. 33, 934–940 (2009).

    Article  PubMed  Google Scholar 

  92. Ouyang, Q. et al. Rab8a as a mitochondrial receptor for lipid droplets in skeletal muscle. Dev. Cell 58, 289–305.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Najt, C. P. et al. Lipid droplet-derived monounsaturated fatty acids traffic via PLIN5 to allosterically activate SIRT1. Mol. Cell 77, 810–824.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, J. et al. An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D−TSG101 interactions. Nat. Commun. 12, 1252 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nguyen, T. B. et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev. Cell 42, 9–21.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32, 678–692 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Benador, I. Y. et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 27, 869–885.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Freyre, C. A. C., Rauher, P. C., Ejsing, C. S. & Klemm, R. W. MIGA2 links mitochondria, the ER, and lipid droplets and promotes de novo lipogenesis in adipocytes. Mol. Cell 76, 811–825.e14 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Najt, C. P. et al. Organelle interactions compartmentalize hepatic fatty acid trafficking and metabolism. Cell Rep. 42, 112435 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gallardo-Montejano, V. I. et al. Perilipin 5 links mitochondrial uncoupled respiration in brown fat to healthy white fat remodeling and systemic glucose tolerance. Nat. Commun. 12, 3320 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gallardo-Montejano, V. I. et al. Nuclear perilipin 5 integrates lipid droplet lipolysis with PGC-1α/SIRT1-dependent transcriptional regulation of mitochondrial function. Nat. Commun. 7, 12723 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hong, Z. et al. Mitoguardin-2–mediated lipid transfer preserves mitochondrial morphology and lipid droplet formation. J. Cell Biol. 221, e202207022 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kim, H., Lee, S., Jun, Y. & Lee, C. Structural basis for mitoguardin-2 mediated lipid transport at ER-mitochondrial membrane contact sites. Nat. Commun. 13, 3702 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Listenberger, L. L., Ory, D. S. & Schaffer, J. E. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J. Biol. Chem. 276, 14890–14895 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Zhu, X. G. et al. CHP1 regulates compartmentalized glycerolipid synthesis by activating GPAT4. Mol. Cell 74, 45–58.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Piccolis, M. et al. Probing the global cellular responses to lipotoxicity caused by saturated fatty acids. Mol. Cell 74, 32–44.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Masuda, M. et al. Saturated phosphatidic acids mediate saturated fatty acid–induced vascular calcification and lipotoxicity. J. Clin. Invest. 125, 4544–4558 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl Acad. Sci. USA 110, 4628–4633 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Halbleib, K. et al. Activation of the unfolded protein response by lipid bilayer stress. Mol. Cell 67, 673–684.e8 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Chitraju, C. et al. Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metab. 26, 407–418.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Listenberger, L. L. et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl Acad. Sci. USA 100, 3077–3082 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Otten, E. G. et al. Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection. Nature 594, 111–116 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sugihara, M. et al. The AAA+ ATPase/ubiquitin ligase mysterin stabilizes cytoplasmic lipid droplets. J. Cell Biol. 218, 949–960 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Senkal, C. E. et al. Ceramide is metabolized to acylceramide and stored in lipid droplets. Cell Metab. 25, 686–697 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Li, Z., Lange, M., Dixon, S. J. & Olzmann, J. A. Lipid quality control and ferroptosis: from concept to mechanism. Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-052521-033527 (2024).

    Article  Google Scholar 

  117. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mishima, E. et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jin, D.-Y. et al. A genome-wide CRISPR-Cas9 knockout screen identifies FSP1 as the warfarin-resistant vitamin K reductase. Nat. Commun. 14, 828 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. Danielli, M., Perne, L., Jarc Jovičić, E. & Petan, T. Lipid droplets and polyunsaturated fatty acid trafficking: balancing life and death. Front. Cell Dev. Biol. 11, 1104725 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420–432.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dierge, E. et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 33, 1701–1715.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Ioannou, M. S. et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177, 1522–1535.e14 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Minami, J. K. et al. CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis. Cancer Cell 41, 1048–1060.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Bailey, A. P. et al. Antioxidant role for lipid droplets in a stem cell niche of drosophila. Cell 163, 340–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ralhan, I. et al. Autolysosomal exocytosis of lipids protect neurons from ferroptosis. J. Cell Biol. 222, e202207130 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mohammadyani, D. et al. Molecular speciation and dynamics of oxidized triacylglycerols in lipid droplets: mass spectrometry and coarse-grained simulations. Free Radic. Biol. Med 76, 53–60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ferrada, L., Barahona, M. J., Vera, M., Stockwell, B. R. & Nualart, F. Dehydroascorbic acid sensitizes cancer cells to system xc inhibition-induced ferroptosis by promoting lipid droplet peroxidation. Cell Death Dis. 14, 637 (2023).

  132. Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  133. Roberts, M. A. et al. Parallel CRISPR-Cas9 screens identify mechanisms of PLIN2 and lipid droplet regulation. Dev. Cell 58, 1782–1800.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Mejhert, N. et al. The Lipid Droplet Knowledge Portal: a resource for systematic analyses of lipid droplet biology. Dev. Cell 57, 387–397.e4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, L. et al. Nonalcoholic fatty liver disease experiences accumulation of hepatic liquid crystal associated with increasing lipophagy. Cell Biosci. 10, 55 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Prévost, C. et al. Mechanism and determinants of amphipathic helix-containing protein targeting to lipid droplets. Dev. Cell 44, 73–86.e4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chorlay, A. & Thiam, A. R. Neutral lipids regulate amphipathic helix affinity for model lipid droplets. J. Cell Biol. 219, e201907099 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wolins, N. E., Brasaemle, D. L. & Bickel, P. E. A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett. 580, 5484–5491 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Kim, S., Swanson, J. M. J. & Voth, G. A. Computational studies of lipid droplets. J. Phys. Chem. B 126, 2145–2154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen, F., Yin, Y., Chua, B. T. & Li, P. CIDE family proteins control lipid homeostasis and the development of metabolic diseases. Traffic 21, 94–105 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Lyu, X. et al. A gel-like condensation of Cidec generates lipid-permeable plates for lipid droplet fusion. Dev. Cell 56, 2592–2606.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Qian, K. et al. CLSTN3β enforces adipocyte multilocularity to facilitate lipid utilization. Nature 613, 160–168 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  143. Sharma, A. K. & Wolfrum, C. Lipid cycling isn’t all futile. Nat. Metab. 5, 540–541 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Wunderling, K., Zurkovic, J., Zink, F., Kuerschner, L. & Thiele, C. Triglyceride cycling enables modification of stored fatty acids. Nat. Metab. 5, 699–709 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Patel, R. et al. ATGL is a biosynthetic enzyme for fatty acid esters of hydroxy fatty acids. Nature 606, 968–975 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Schulze, R. J. et al. Direct lysosome-based autophagy of lipid droplets in hepatocytes. Proc. Natl Acad. Sci. USA 117, 32443–32452 (2020).

  148. Menon, D. et al. ARL8B mediates lipid droplet contact and delivery to lysosomes for lipid remobilization. Cell Rep. 42, 113203 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Omrane, M. et al. LC3B is lipidated to large lipid droplets during prolonged starvation for noncanonical autophagy. Dev. Cell 58, 1266–1281.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Institutes of Health to J.A.O. (R01GM112948 and R01DK128099) and a predoctoral fellowship from the National Science Foundation to A.J.M. J.A.O. is a Chan Zuckerberg Biohub Investigator. We thank W. M. Henne, S. Banerjee and M. A. Roberts for critical reading and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Olzmann.

Ethics declarations

Competing interests

J.A.O. is a member of the scientific advisory board for Vicinitas Therapeutics and has patent applications related to ferroptosis. A.J.M. has no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathiowetz, A.J., Olzmann, J.A. Lipid droplets and cellular lipid flux. Nat Cell Biol 26, 331–345 (2024). https://doi.org/10.1038/s41556-024-01364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-024-01364-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing