Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A guideline on the molecular ecosystem regulating ferroptosis

Abstract

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Production of ROS in ferroptosis.
Fig. 2: Lipid resources for ferroptosis.
Fig. 3: Lipid peroxidation in ferroptosis.
Fig. 4: Enzymatic antioxidants in ferroptosis.

Similar content being viewed by others

References

  1. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, X. et al. A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis. Nat. Commun. 13, 6318 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amoscato, A. A. et al. Formation of protein adducts with Hydroperoxy–PE electrophilic cleavage products during ferroptosis. Redox Biol. 63, 102758 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, P. et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat. Immunol. 22, 1107–1117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amaral, E. P. et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J. Exp. Med. 216, 556–570 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Muri, J., Thut, H., Bornkamm, G. W. & Kopf, M. B1 and marginal zone B cells but not follicular B2 cells require Gpx4 to prevent lipid peroxidation and ferroptosis. Cell Rep. 29, 2731–2744 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Matsushita, M. et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212, 555–568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Banjac, A. et al. The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death. Oncogene 27, 1618–1628 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, P. H. et al. Zinc transporter ZIP7 is a novel determinant of ferroptosis. Cell Death Dis. 12, 198 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xue, Q. et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy 19, 1982–1996 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, J. et al. Tumor heterogeneity in autophagy-dependent ferroptosis. Autophagy 17, 3361–3374 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao, M. et al. Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021–1032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bai, Y. et al. Lipid storage and lipophagy regulates ferroptosis. Biochem. Biophys. Res. Commun. 508, 997–1003 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, M. et al. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci. Adv. 5, eaaw2238 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59, 298–308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao, M. et al. Role of mitochondria in ferroptosis. Mol. Cell 73, 354–363 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, Y. J., Jeong, S. Y., Karbowski, M., Smith, C. L. & Youle, R. J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001–5011 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, C., Liu, J., Hou, W., Kang, R. & Tang, D. STING1 promotes ferroptosis through MFN1/2-dependent mitochondrial fusion. Front. Cell Dev. Biol. 9, 698679 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee, H. et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat. Cell Biol. 22, 225–234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song, X. et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc activity. Curr. Biol. 28, 2388–2399 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, C. et al. De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence. Nat. Cell Biol. 25, 836–847 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Xie, Y. et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 20, 1692–1704 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Yan, B. et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol. Cell 81, 355–369 (2020).

  32. Zou, Y. et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol. 16, 302–309 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun. 478, 1338–1343 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Dixon, S. J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin, Z. et al. The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis. Nat. Commun. 13, 7965 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liao, P. et al. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 40, 365–378 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, H. L. et al. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat. Cell Biol. 24, 88–98 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, X. et al. Identification of HPCAL1 as a specific autophagy receptor involved in ferroptosis. Autophagy 19, 54–74 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420–432 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl Acad. Sci. USA 113, E4966–E4975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, Y. et al. SLC25A22 as a key mitochondrial transporter against ferroptosis by producing glutathione and monounsaturated fatty acids. Antioxid. Redox Signal. 39, 166–185 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liang, D. et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 186, 2748–2764 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Chu, B. et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat. Cell Biol. 21, 579–591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zou, Y. et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585, 603–608 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xin, S. et al. MS4A15 drives ferroptosis resistance through calcium-restricted lipid remodeling. Cell Death Differ. 29, 670–686 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Klasson, T. D. et al. ACSL3 regulates lipid droplet biogenesis and ferroptosis sensitivity in clear cell renal cell carcinoma. Cancer Metab. 10, 14 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Reed, A., Ware, T., Li, H., Fernando Bazan, J. & Cravatt, B. F. TMEM164 is an acyltransferase that forms ferroptotic C20:4 ether phospholipids. Nat. Chem. Biol. 19, 378–388 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, J. et al. TMEM164 is a new determinant of autophagy-dependent ferroptosis. Autophagy 19, 945–956 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Li, C. et al. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy 17, 948–960 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Nagasaki, T. et al. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation. J. Clin. Invest. 132, e151685 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wenzel, S. E. et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171, 628–641 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dar, H. H. et al. Discovering selective antiferroptotic inhibitors of the 15LOX/PEBP1 complex noninterfering with biosynthesis of lipid mediators. Proc. Natl Acad. Sci. USA 120, e2218896120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu, Y. et al. COX-2/PGE2 pathway inhibits the ferroptosis induced by cerebral ischemia reperfusion. Mol. Neurobiol. 59, 1619–1631 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Y. et al. PGE2 pathway mediates oxidative stress-induced ferroptosis in renal tubular epithelial cells. FEBS J. 290, 533–549 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Riegman, M. et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat. Cell Biol. 22, 1042–1048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hirata, Y. et al. Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. Curr. Biol. 33, 1282–1294 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Pedrera, L. et al. Ferroptotic pores induce Ca2+ fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ. 28, 1644–1657 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Dai, E., Meng, L., Kang, R., Wang, X. & Tang, D. ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem. Biophys. Res. Commun. 522, 415–421 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. von Krusenstiern, A. N. et al. Identification of essential sites of lipid peroxidation in ferroptosis. Nat. Chem. Biol. 19, 719–730 (2023).

    Article  Google Scholar 

  62. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Yao, Y. et al. Selenium–GPX4 axis protects follicular helper T cells from ferroptosis. Nat. Immunol. 22, 1127–1139 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Li, Z. et al. Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability. Nat. Chem. Biol. 18, 751–761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhu, S. et al. HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res. 77, 2064–2077 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu, Z. et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc. Natl Acad. Sci. USA 116, 2996–3005 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu, K. et al. Creatine kinase B suppresses ferroptosis by phosphorylating GPX4 through a moonlighting function. Nat. Cell Biol. 25, 714–725 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Li, J. et al. Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer. Sci. Transl. Med. 15, eadg3049 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, H. et al. Characterization of a patient-derived variant of GPX4 for precision therapy. Nat. Chem. Biol. 18, 91–100 (2022).

    Article  PubMed  Google Scholar 

  71. Roveri, A. et al. Cardiolipin drives the catalytic activity of GPX4 on membranes: insights from the R152H mutant. Redox Biol. 64, 102806 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yant, L. J. et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34, 496–502 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24, 97–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dai, E. et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat. Commun. 11, 6339 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Conche, C. et al. Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade. Gut 72, 1774–1782 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, L., Hambright, W. S., Na, R. & Ran, Q. Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J. Biol. Chem. 290, 28097–28106 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mayr, L. et al. Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat. Commun. 11, 1775 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dixon, S. J. et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zheng, J. et al. Sorafenib fails to trigger ferroptosis across a wide range of cancer cell lines. Cell Death Dis. 12, 698 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Forman, H. J., Zhang, H. & Rinna, A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 30, 1–12 (2009).

    Article  CAS  Google Scholar 

  81. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Deshwal, S. et al. Mitochondria regulate intracellular coenzyme Q transport and ferroptotic resistance via STARD7. Nat. Cell Biol. 25, 246–257 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dai, E. et al. AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochem. Biophys. Res. Commun. 523, 966–971 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Mishima, E. et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kolbrink, B. et al. Vitamin K1 inhibits ferroptosis and counteracts a detrimental effect of phenprocoumon in experimental acute kidney injury. Cell Mol. Life Sci. 79, 387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nakamura, T. et al. Phase separation of FSP1 promotes ferroptosis. Nature 619, 371–377 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mao, C. et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593, 586–590 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mishima, E. et al. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature 619, E9–E18 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Mao, C., Liu, X., Yan, Y., Olszewski, K. & Gan, B. Reply to: DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature 619, E19–E23 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Kraft, V. A. N. et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci. 6, 41–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Liu, L., Wang, M., Gong, N., Tian, P. & Deng, H. Se improves GPX4 expression and SOD activity to alleviate heat-stress-induced ferroptosis-like death in goat mammary epithelial cells. Anim. Cells Syst. 25, 283–295 (2021).

    Article  CAS  Google Scholar 

  93. Kapralov, A. A. et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat. Chem. Biol. 16, 278–290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kuang, F., Liu, J., Xie, Y., Tang, D. & Kang, R. MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem. Biol. 28, 765–775 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, Q. et al. GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis. Cell Death Dis. 12, 426 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  96. Liu, S. et al. TXNRD1: a key regulator involved in the ferroptosis of CML cells induced by cysteine depletion in vitro. Oxid. Med. Cell Longev. 2021, 7674565 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rong, Y. et al. DIAPH3 promotes pancreatic cancer progression by activating selenoprotein TrxR1-mediated antioxidant effects. J. Cell. Mol. Med. 25, 2163–2175 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Lovatt, M. et al. Peroxiredoxin-1 regulates lipid peroxidation in corneal endothelial cells. Redox Biol. 30, 101417 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Tang, L. et al. TXNDC12 inhibits lipid peroxidation and ferroptosis. iScience 26, 108393 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sun, W. Y. et al. Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal. Nat. Chem. Biol. 17, 465–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen, D. et al. iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat. Commun. 12, 3644 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Protchenko, O. et al. Iron chaperone poly rC binding protein 1 protects mouse liver from lipid peroxidation and steatosis. Hepatology 73, 1176–1193 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Sun, X. et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 64, 488–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Komatsu, M. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Sun, X. et al. Activation of the p62–Keap1–NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63, 173–184 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Anandhan, A. et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci. Adv. 9, eade9585 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang, X. et al. Regulation of VKORC1L1 is critical for p53-mediated tumor suppression through vitamin K metabolism. Cell Metab. 35, 1474–1490 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Ou, Y., Wang, S. J., Li, D., Chu, B. & Gu, W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc. Natl Acad. Sci. USA 113, E6806–E6812 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tarangelo, A. et al. p53 Suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22, 569–575 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Su, Z. et al. Specific regulation of BACH1 by the hotspot mutant p53R175H reveals a distinct gain-of-function mechanism. Nat. Cancer 4, 564–581 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, D. et al. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene 36, 5593–5608 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ahola, S. et al. OMA1-mediated integrated stress response protects against ferroptosis in mitochondrial cardiomyopathy. Cell Metab. 34, 1875–1891 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. He, F. et al. ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis. J. Hepatol. 79, 362–377 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Kalkavan, H. et al. Sublethal cytochrome c release generates drug-tolerant persister cells. Cell 185, 3356–3374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yang, Z. et al. HIF-1α drives resistance to ferroptosis in solid tumors by promoting lactate production and activating SLC1A1. Cell Rep. 42, 112945 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Yao, F. et al. A targetable LIFR–NF-κB–LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis. Nat. Commun. 12, 7333 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu, J. et al. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling. Nature 572, 402–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang, W. H. et al. The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep. 28, 2501–2508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yi, J., Zhu, J., Wu, J., Thompson, C. B. & Jiang, X. Oncogenic activation of PI3K–AKT–mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc. Natl Acad. Sci. USA 117, 31189–31197 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ralhan, I. et al. Autolysosomal exocytosis of lipids protect neurons from ferroptosis. J. Cell Biol. 222, e202207130 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, W. et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lang, X. et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9, 1673–1685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 20, 1181–1192 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Barayeu, U. et al. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nat. Chem. Biol. 19, 28–37 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Sun, J. et al. Midbrain dopamine oxidation links ubiquitination of glutathione peroxidase 4 to ferroptosis of dopaminergic neurons. J. Clin. Invest. 133, e165228 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jia, J. N. et al. Neuroprotective effects of the anti-cancer drug lapatinib against epileptic seizures via suppressing glutathione peroxidase 4-dependent ferroptosis. Front. Pharm. 11, 601572 (2020).

    Article  CAS  Google Scholar 

  130. Tonnus, W. et al. Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury. Nat. Commun. 12, 4402 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cheff, D. M. et al. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol. 62, 102703 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, Y. et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol. 26, 623–633 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Muller, T. et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell. Mol. Life Sci. 74, 3631–3645 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Feng, H. et al. Transferrin receptor is a specific ferroptosis marker. Cell Rep. 30, 3411–3423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cui, S. et al. Identification of hyperoxidized PRDX3 as a ferroptosis marker reveals ferroptotic damage in chronic liver diseases. Mol. Cell 83, 3931–3939 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Wen, Q., Liu, J., Kang, R., Zhou, B. & Tang, D. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 510, 278–283 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Efimova, I. et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J. Immunother. Cancer 8, e001369 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Yang, L. et al. Extracellular SQSTM1 exacerbates acute pancreatitis by activating autophagy-dependent ferroptosis. Autophagy 19, 1733–1744 (2022).

  140. Liu, J. et al. DCN released from ferroptotic cells ignites AGER-dependent immune responses. Autophagy 18, 2036–2049 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Kim, R. et al. Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612, 338–346 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 54, 1561–1577 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ma, X. et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 33, 1001–1012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Poznanski, S. M. et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metab. 33, 1205–1220 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Han, L. et al. PPARG-mediated ferroptosis in dendritic cells limits antitumor immunity. Biochem. Biophys. Res. Commun. 576, 33–39 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Ferrer, M. et al. Ketogenic diet promotes tumor ferroptosis but induces relative corticosterone deficiency that accelerates cachexia. Cell Metab. 35, 1147–1162 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Zhao, J. et al. Human hematopoietic stem cell vulnerability to ferroptosis. Cell 186, 732–747 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Song, X. et al. FANCD2 protects against bone marrow injury from ferroptosis. Biochem. Biophys. Res. Commun. 480, 443–449 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Eling, N., Reuter, L., Hazin, J., Hamacher-Brady, A. & Brady, N. R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2, 517–532 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Stockwell, B. R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all of the pioneers in the field and our colleagues who contributed to the study of the process and function of ferroptosis. The lead contact D.T. is supported by grants from the US National Institutes of Health (R01CA160417, R01CA229275 and R01GM127791).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enyong Dai, Brent R. Stockwell, Guido Kroemer or Daolin Tang.

Ethics declarations

Competing interests

B.R.S. is an inventor on patents and patent applications involving ferroptosis, co-founded (and serves as a consultant to, ProJenX and Exarta Therapeutics, holds equity in Sonata Therapeutics and serves as a consultant to Weatherwax Biotechnologies Corporation and Akin Gump Strauss Hauer & Feld LLP. B.G. is an inventor on patent applications involving targeting ferroptosis in cancer therapy and reports personal fees from Guidepoint Global, Cambridge Solutions and NGM Bio. D.I.G. is an employee and shareholder of AstraZeneca. V.G.S. serves as an advisor to, and/or has equity, in Branch Biosciences, Ensoma and Cellarity (all unrelated to the present work). L.G. has/had research contracts with Lytix Biopharma, Promontory and Onxeo; received consulting/advisory honoraria from Boehringer Ingelheim, AstraZeneca, OmniSEQ, Onxeo, The Longevity Labs, Inzen, Imvax, Sotio, Promontory, Noxopharm, EduCom and the Luke Heller TECPR2 Foundation; and holds Promontory stock options. A.I.B. holds shares in Cogstate Ltd, Alterity Ltd and a profit share with Collaborative Medicinal Development LLC, and acts as a paid consultant to Collaborative Medicinal Development LLC. X.J. is an inventor of patents related to autophagy and cell death, and holds equity in, and also consults for, Exarta Therapeutics and Lime Therapeutics. G.K. has research contracts with Daiichi Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Osasuna Therapeutics, Samsara Therapeutics, Sanofi, Tollys, and Vascage; is on the Board of Directors of the Bristol Myers Squibb Foundation France; is a scientific cofounder of everImmune, Osasuna Therapeutics, Samsara Therapeutics and Therafast Bio; is on the scientific advisory boards of Hevolution, Institut Servier and Longevity Vision Funds; and is the inventor of patents covering therapeutic targeting of ageing, cancer, cystic fibrosis and metabolic disorders. G.K.’s wife, L. Zitvogel, has held research contracts with GlaxoSmithKline, Incyte, Lytix, Kaleido, Innovate Pharma, Daiichi Sankyo, Pilege, Merus, Transgene, 9 m, Tusk and Roche; she was on the Board of Directors of Transgene, is a cofounder of everImmune and holds patents covering the treatment of cancer and the therapeutic manipulation of the microbiota. G.K.’s brother, R. Kroemer, was an employee of Sanofi and now consults for Boehringer Ingelheim. The remaining authors declare no competing interests. The funders had no role in the writing of the manuscript.

Peer review

Peer review information

Nature Cell Biology thanks Graeme Lancaster, Maureen Murphy and Tobias Dansen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, E., Chen, X., Linkermann, A. et al. A guideline on the molecular ecosystem regulating ferroptosis. Nat Cell Biol (2024). https://doi.org/10.1038/s41556-024-01360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41556-024-01360-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research