Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cell biology of ferroptosis

Subjects

Abstract

Ferroptosis is a non-apoptotic cell death mechanism characterized by iron-dependent membrane lipid peroxidation. Here, we review what is known about the cellular mechanisms mediating the execution and regulation of ferroptosis. We first consider how the accumulation of membrane lipid peroxides leads to the execution of ferroptosis by altering ion transport across the plasma membrane. We then discuss how metabolites and enzymes that are distributed in different compartments and organelles throughout the cell can regulate sensitivity to ferroptosis by impinging upon iron, lipid and redox metabolism. Indeed, metabolic pathways that reside in the mitochondria, endoplasmic reticulum, lipid droplets, peroxisomes and other organelles all contribute to the regulation of ferroptosis sensitivity. We note how the regulation of ferroptosis sensitivity by these different organelles and pathways seems to vary between different cells and death-inducing conditions. We also highlight transcriptional master regulators that integrate the functions of different pathways and organelles to modulate ferroptosis sensitivity globally. Throughout this Review, we highlight open questions and areas in which progress is needed to better understand the cell biology of ferroptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The general mechanism of ferroptosis.
Fig. 2: Ferroptosis regulation in the mitochondria.
Fig. 3: Ferroptosis regulation in the ER.
Fig. 4: PUFA flux and sequestration in lipid droplets.
Fig. 5: A cellular map of ferroptosis regulation.

Similar content being viewed by others

References

  1. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galy, B., Conrad, M. & Muckenthaler, M. Mechanisms controlling cellular and systemic iron homeostasis.Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-023-00648-1 (2023).

    Article  PubMed  Google Scholar 

  3. Conrad, M. & Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Ursini, F. & Maiorino, M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic. Biol. Med. 152, 175–185 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Conrad, M. et al. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev. 32, 602–619 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 20, 1181–1192 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stockwell, B. R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hirata, Y. et al. Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis.Curr. Biol. 33, 1282–1294.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Dixon, S. J. & Pratt, D. A. Ferroptosis: a flexible constellation of related biochemical mechanisms. Mol. Cell 83, 1030–1042 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Green, D. R. The coming decade of cell death research: five riddles. Cell 177, 1094–1107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Dondelinger, Y. et al. NINJ1 is activated by cell swelling to regulate plasma membrane permeabilization during regulated necrosis. Cell Death Dis. 14, 755 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pope, L. E. & Dixon, S. J. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33, 1077–1087 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Liang, D., Minikes, A. M. & Jiang, X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 82, 2215–2227 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, Z., Lange, M., Dixon, S. J. & Olzmann, J. A. Lipid quality control and ferroptosis: from concept to mechanism. Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-052521-033527 (2023).

    Article  PubMed  Google Scholar 

  17. Wenzel, S. E. et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171, 628–641.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shah, R., Shchepinov, M. S. & Pratt, D. A. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent. Sci. 4, 387–396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zilka, O. et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent. Sci. 3, 232–243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anthonymuthu, T. S. et al. Resolving the paradox of ferroptotic cell death: ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of peroxidized ETE-PE, and protects against ferroptosis. Redox Biol. 38, 101744 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Tyurina, Y. Y. et al. Redox phospholipidomics discovers pro-ferroptotic death signals in A375 melanoma cells in vitro and in vivo. Redox Biol. 61, 102650 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kathman, S. G., Boshart, J., Jing, H. & Cravatt, B. F. Blockade of the lysophosphatidylserine lipase ABHD12 potentiates ferroptosis in cancer cells. ACS Chem. Biol. 15, 871–877 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kraft, V. A. N. et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci. 6, 41–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Phadnis, V. V. et al. MMD collaborates with ACSL4 and MBOAT7 to promote polyunsaturated phosphatidylinositol remodeling and susceptibility to ferroptosis. Cell Rep. 42, 113023 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zou, Y. et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585, 603–608 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Reed, A., Ware, T., Li, H., Fernando Bazan, J. & Cravatt, B. F. TMEM164 is an acyltransferase that forms ferroptotic C20:4 ether phospholipids. Nat. Chem. Biol. 19, 378–388 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Magtanong, L. et al. Context-dependent regulation of ferroptosis sensitivity. Cell Chem. Biol. 29, 1409–1418.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420–432.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. von Krusenstiern, A. N. et al. Identification of essential sites of lipid peroxidation in ferroptosis. Nat. Chem. Biol. 19, 719–730 (2023).

    Article  Google Scholar 

  30. Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Pedrera, L. et al. Ferroptotic pores induce Ca2+ fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ. 28, 1644–1657 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Riegman, M. et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat. Cell Biol. 22, 1042–1048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agmon, E., Solon, J., Bassereau, P. & Stockwell, B. R. Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci. Rep. 8, 5155 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  34. Roveri, A., Maiorino, M., Nisii, C. & Ursini, F. Purification and characterization of phospholipid hydroperoxide glutathione peroxidase from rat testis mitochondrial membranes. Biochim. Biophys. Acta 1208, 211–221 (1994).

    Article  PubMed  Google Scholar 

  35. Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Mao, C. et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593, 586–590 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Mishima, E. et al. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature 619, E9–E18 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Mao, C., Liu, X., Yan, Y., Olszewski, K. & Gan, B. Reply to: DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature 619, E19–E23 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Labrecque, C. L. & Fuglestad, B. Electrostatic drivers of GPx4 interactions with membrane, lipids, and DNA. Biochemistry 60, 2761–2772 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Mishima, E. et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Lv, Y. et al. Structural insights into FSP1 catalysis and ferroptosis inhibition. Nat. Commun. 14, 5933 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Soula, M. et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat. Chem. Biol. 16, 1351–1360 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jakaria, M., Belaidi, A. A., Bush, A. I. & Ayton, S. Vitamin A metabolites inhibit ferroptosis. Biomed. Pharmacother. 164, 114930 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Dai, E., Meng, L., Kang, R., Wang, X. & Tang, D. ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem. Biophys. Res. Commun. 522, 415–421 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ruhl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    Article  PubMed  ADS  Google Scholar 

  50. Yang, W. H. et al. The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep. 28, 2501–2508.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Poursaitidis, I. et al. Oncogene-selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine. Cell Rep. 18, 2547–2556 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59, 298–308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guan, Y. et al. A single genetic locus controls both expression of DPEP1/CHMP1A and kidney disease development via ferroptosis. Nat. Commun. 12, 5078 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Ma, X. et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 33, 1001–1012.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin, Z. et al. The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis. Nat. Commun. 13, 7965 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Cao, J. Y. et al. A genome-wide haploid genetic screen identifies regulators of glutathione abundance and ferroptosis sensitivity. Cell Rep. 26, 1544–1556.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dixon, S. J. et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Armenta, D. A. et al. Ferroptosis inhibition by lysosome-dependent catabolism of extracellular protein. Cell Chem. Biol. 29, 1588–1600.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kobayashi, S. et al. Carnosine dipeptidase II (CNDP2) protects cells under cysteine insufficiency by hydrolyzing glutathione-related peptides. Free Radic. Biol. Med. 174, 12–27 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Hayashima, K. & Katoh, H. Expression of gamma-glutamyltransferase 1 in glioblastoma cells confers resistance to cystine deprivation-induced ferroptosis. J. Biol. Chem. 298, 101703 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, L. et al. Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proc. Natl Acad. Sci. USA 119, e2122840119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, Z. et al. Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability. Nat. Chem. Biol. 18, 751–761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Greenough, M. A. et al. Selective ferroptosis vulnerability due to familial Alzheimer’s disease presenilin mutations. Cell Death Differ. 29, 2123–2136 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alborzinia, H. et al. LRP8-mediated selenocysteine uptake is a targetable vulnerability in MYCN-amplified neuroblastoma. EMBO Mol. Med. 15, e18014 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carlisle, A. E. et al. Selenium detoxification is required for cancer-cell survival. Nat. Metab. 2, 603–611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Howard, M. T., Carlson, B. A., Anderson, C. B. & Hatfield, D. L. Translational redefinition of UGA codons is regulated by selenium availability. J. Biol. Chem. 288, 19401–19413 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harris, I. S. et al. Deubiquitinases maintain protein homeostasis and survival of cancer cells upon glutathione depletion. Cell Metab. 29, 1166–1181.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Leu, J. I., Murphy, M. E. & George, D. L. Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53. Proc. Natl Acad. Sci. USA 116, 8390–8396 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Barayeu, U. et al. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nat. Chem. Biol. 19, 28–37 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wu, Z. et al. Hydropersulfides inhibit lipid peroxidation and protect cells from ferroptosis. J. Am. Chem. Soc. 144, 15825–15837 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Kang, Y. P. et al. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab. 33, 174–189.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Chen, L. et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat. Metab. 1, 404–415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shimada, K., Hayano, M., Pagano, N. C. & Stockwell, B. R. Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity. Cell Chem. Biol. 23, 225–235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yan, B. et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol. Cell 81, 355–369.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Zou, Y. et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol. 16, 302–309 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ding, C. C. et al. MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. Nat. Metab. 2, 270–277 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nguyen, K. T. et al. The MARCHF6 E3 ubiquitin ligase acts as an NADPH sensor for the regulation of ferroptosis. Nat. Cell Biol. 24, 1239–1251 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Yagoda, N. et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447, 864–868 (2007).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  81. Gaschler, M. M. et al. Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis. ACS Chem. Biol. 13, 1013–1020 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bogacz, M. & Krauth-Siegel, R. L. Tryparedoxin peroxidase-deficiency commits trypanosomes to ferroptosis-type cell death. eLife 7, e37503 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Guo, Y. et al. Small molecule agonist of mitochondrial fusion repairs mitochondrial dysfunction. Nat. Chem. Biol. 19, 468–477 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Ahola, S. et al. OMA1-mediated integrated stress response protects against ferroptosis in mitochondrial cardiomyopathy. Cell Metab. 34, 1875–1891.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Guerra, R. M. & Pagliarini, D. J. Coenzyme Q biochemistry and biosynthesis. Trends Biochem. Sci. 48, 463–476 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Deshwal, S. et al. Mitochondria regulate intracellular coenzyme Q transport and ferroptotic resistance via STARD7. Nat. Cell Biol. 25, 246–257 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Blomme, A. et al. 2,4-Dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer. Nat. Commun. 11, 2508 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  88. Nassar, Z. D. et al. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. eLife 9, e54166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gao, M. et al. Role of mitochondria in ferroptosis. Mol. Cell 73, 354–363.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Conlon, M. et al. A compendium of kinetic modulatory profiles identifies ferroptosis regulators. Nat. Chem. Biol. 17, 665–674 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, T. et al. ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1. Nat. Cancer 3, 75–89 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Alvarez, S. W. et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551, 639–643 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  93. Kalkavan, H. et al. Sublethal cytochrome c release generates drug-tolerant persister cells. Cell 185, 3356–3374.e22 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tarangelo, A. et al. Nucleotide biosynthesis links glutathione metabolism to ferroptosis sensitivity. Life Sci. Alliance 5, e202101157 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu, S. et al. A ferroptosis defense mechanism mediated by glycerol-3-phosphate dehydrogenase 2 in mitochondria. Proc. Natl Acad. Sci. USA 119, e2121987119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang, C. et al. De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence. Nat. Cell Biol. 25, 836–847 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, F. et al. PALP: a rapid imaging technique for stratifying ferroptosis sensitivity in normal and tumor tissues in situ. Cell Chem. Biol. 29, 157–170.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl Acad. Sci. USA 113, E4966–E4975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  100. Mann, J. et al. Ferroptosis inhibition by oleic acid mitigates iron-overload-induced injury. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2023.10.012 (2023).

    Article  PubMed  Google Scholar 

  101. Perez, M. A., Magtanong, L., Dixon, S. J. & Watts, J. L. Dietary lipids induce ferroptosis in Caenorhabditis elegans and human cancer cells. Dev. Cell 54, 447–454.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee, J. Y. et al. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc. Natl Acad. Sci. USA 117, 32433–32442 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  103. Yamane, D. et al. FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication. Cell Chem. Biol. 29, 799–810.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Xin, S. et al. MS4A15 drives ferroptosis resistance through calcium-restricted lipid remodeling. Cell Death Differ. 29, 670–686 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Dixon, S. J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Bartolacci, C. et al. Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer. Nat. Commun. 13, 4327 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  108. Radif, Y. et al. The endogenous subcellular localisations of the long chain fatty acid-activating enzymes ACSL3 and ACSL4 in sarcoma and breast cancer cells. Mol. Cell Biochem. 448, 275–286 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kuch, E. M. et al. Differentially localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling of fatty acids towards phosphatidylinositol. Biochim. Biophys. Acta 1841, 227–239 (2014).

    Article  PubMed  Google Scholar 

  110. Poppelreuther, M. et al. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. J. Lipid Res. 53, 888–900 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhu, X. G. et al. CHP1 regulates compartmentalized glycerolipid synthesis by activating GPAT4. Mol. Cell 74, 45–58.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Beharier, O. et al. PLA2G6 guards placental trophoblasts against ferroptotic injury. Proc. Natl Acad. Sci. USA 117, 27319–27328 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  113. Sun, W. Y. et al. Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal. Nat. Chem. Biol. 17, 465–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen, D. et al. iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat. Commun. 12, 3644 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  115. Reed, A. et al. LPCAT3 inhibitors remodel the polyunsaturated phospholipid content of human cells and protect from ferroptosis. ACS Chem. Biol. 17, 1607–1618 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  116. Liang, D. et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 186, 2748–2794.e22 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Rodencal, J. et al. Sensitization of cancer cells to ferroptosis coincident with cell cycle arrest. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2023.10.011 (2023).

    Article  PubMed  Google Scholar 

  118. Zhao, Y. et al. Identification and characterization of a major liver lysophosphatidylcholine acyltransferase. J. Biol. Chem. 283, 8258–8265 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Mishra, R. S., Carnevale, K. A. & Cathcart, M. K. iPLA2β: front and center in human monocyte chemotaxis to MCP-1. J. Exp. Med. 205, 347–359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Friedmann Angeli, J. P. et al. 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-943221/v1 (2021).

    Article  Google Scholar 

  121. Yamada, N. et al. DHCR7 as a novel regulator of ferroptosis in hepatocytes. Preprint at bioRxiv https://doi.org/10.1101/2022.06.15.496212 (2022).

    Article  Google Scholar 

  122. Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  123. Schumacher, M. M. & DeBose-Boyd, R. A. Posttranslational regulation of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol. Annu. Rev. Biochem. 90, 659–679 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Conrad, M. & Proneth, B. Selenium: tracing another essential element of ferroptotic cell death. Cell Chem. Biol. 27, 409–419 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Yi, J., Zhu, J., Wu, J., Thompson, C. B. & Jiang, X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc. Natl Acad. Sci. USA 117, 31189–31197 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  126. Vangala, J. R., Sotzny, F., Kruger, E., Deshaies, R. J. & Radhakrishnan, S. K. Nrf1 can be processed and activated in a proteasome-independent manner. Curr. Biol. 26, R834–R835 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tomlin, F. M. et al. Inhibition of NGLY1 inactivates the transcription factor Nrf1 and potentiates proteasome inhibitor cytotoxicity. ACS Cent. Sci. 3, 1143–1155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chavarria, C. et al. ER-trafficking triggers NRF1 ubiquitination to promote its proteolytic activation. iScience 26, 107777 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  129. Dirac-Svejstrup, A. B. et al. DDI2 Is a ubiquitin-directed endoprotease responsible for cleavage of transcription factor NRF1. Mol. Cell 79, 332–341.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Forcina, G. C. et al. Ferroptosis regulation by the NGLY1/NFE2L1 pathway. Proc. Natl Acad. Sci. USA 119, e2118646119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kotschi, S. et al. NFE2L1-mediated proteasome function protects from ferroptosis. Mol. Metab. 57, 101436 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Song, W., Zhang, W., Yue, L. & Lin, W. Revealing the effects of endoplasmic reticulum stress on ferroptosis by two-channel real-time imaging of pH and viscosity. Anal. Chem. 94, 6557–6565 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Danielli, M., Perne, L., Jarc Jovicic, E. & Petan, T. Lipid droplets and polyunsaturated fatty acid trafficking: balancing life and death. Front. Cell Dev. Biol. 11, 1104725 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dierge, E. et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 33, 1701–1715.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Minami, J. K. et al. CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis. Cancer Cell 41, 1048–1060.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Lee, H. et al. Cell cycle arrest induces lipid droplet formation and confers ferroptosis resistance. Nat. Commun. 15, 79 (2024).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  138. Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  139. Ferrada, L., Barahona, M. J., Vera, M., Stockwell, B. R. & Nualart, F. Dehydroascorbic acid sensitizes cancer cells to system xc- inhibition-induced ferroptosis by promoting lipid droplet peroxidation. Cell Death Dis. 14, 637 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mohammadyani, D. et al. Molecular speciation and dynamics of oxidized triacylglycerols in lipid droplets: mass spectrometry and coarse-grained simulations. Free Radic. Biol. Med. 76, 53–60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Perez, M. A. et al. Ether lipid deficiency disrupts lipid homeostasis leading to ferroptosis sensitivity. PLoS Genet. 18, e1010436 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Alborzinia, H. et al. Golgi stress mediates redox imbalance and ferroptosis in human cells. Commun. Biol. 1, 210 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Huang, Y. et al. UBIAD1 alleviates ferroptotic neuronal death by enhancing antioxidative capacity by cooperatively restoring impaired mitochondria and Golgi apparatus upon cerebral ischemic/reperfusion insult. Cell Biosci. 12, 42 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Nakagawa, K. et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature 468, 117–121 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  145. Rost, S. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427, 537–541 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  146. Jin, D. Y. et al. A genome-wide CRISPR-Cas9 knockout screen identifies FSP1 as the warfarin-resistant vitamin K reductase. Nat. Commun. 14, 828 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  147. Yang, X. et al. Regulation of VKORC1L1 is critical for p53-mediated tumor suppression through vitamin K metabolism.Cell Metab. 35, 1474–1490.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Mugoni, V. et al. Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell 152, 504–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jo, Y. & DeBose-Boyd, R. A. Post-translational regulation of HMG CoA reductase. Cold Spring Harb. Perspect. Biol. 14, a041253 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Torii, S. et al. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem. J. 473, 769–777 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gao, M. et al. Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021–1032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gryzik, M., Asperti, M., Denardo, A., Arosio, P. & Poli, M. NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118913 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Anandhan, A. et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci. Adv. 9, eade9585 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wu, Z. et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc. Natl Acad. Sci. USA 116, 2996–3005 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  156. Wu, K. et al. Creatine kinase B suppresses ferroptosis by phosphorylating GPX4 through a moonlighting function. Nat. Cell Biol. 25, 714–725 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Dixon, S. J. & Stockwell, B. R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Swanda, R. V. et al. Lysosomal cystine governs ferroptosis sensitivity in cancer via cysteine stress response. Mol. Cell 10, 3347–3359.e9 (2023).

    Article  Google Scholar 

  159. Zhang, Y. et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat. Commun. 12, 1589 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  160. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Vaca, C. E. & Harms-Ringdahl, M. Nuclear membrane lipid peroxidation products bind to nuclear macromolecules. Arch. Biochem. Biophys. 269, 548–554 (1989).

    Article  CAS  PubMed  Google Scholar 

  163. Zhang, Y. et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol. 26, 623–633.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tarangelo, A. et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22, 569–575 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Muller, F. et al. Elevated FSP1 protects KRAS-mutated cells from ferroptosis during tumor initiation. Cell Death Differ. 30, 442–456 (2023).

    Article  PubMed  Google Scholar 

  166. Koppula, P. et al. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat. Commun. 13, 2206 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  167. Takahashi, N. et al. 3D culture models with CRISPR screens reveal hyperactive NRF2 as a prerequisite for spheroid formation via regulation of proliferation and ferroptosis. Mol. Cell 80, 828–844.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kuang, F., Liu, J., Xie, Y., Tang, D. & Kang, R. MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem. Biol. 28, 765–775.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang, W. et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  171. Wang, L. et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 27, 662–675 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Wu, J. et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 572, 402–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Venkatesh, D. et al. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling. Genes Dev. 34, 526–543 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Liu, J. et al. NUPR1 is a critical repressor of ferroptosis. Nat. Commun. 12, 647 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  175. Alborzinia, H. et al. MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis. Nat. Cancer 3, 471–485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Floros, K. V. et al. MYCN-amplified neuroblastoma is addicted to iron and vulnerable to inhibition of the system Xc/glutathione axis. Cancer Res. 81, 1896–1908 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang, Y., Koppula, P. & Gan, B. Regulation of H2A ubiquitination and SLC7A11 expression by BAP1 and PRC1. Cell Cycle 18, 773–783 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Valente, L. J. et al. p53 deficiency triggers dysregulation of diverse cellular processes in physiological oxygen. J. Cell Biol. 219, e201908212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wohlhieter, C. A. et al. Concurrent mutations in STK11 and KEAP1 promote ferroptosis protection and SCD1 dependence in lung cancer. Cell Rep. 33, 108444 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhao, Y. et al. HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep. 33, 108487 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Tesfay, L. et al. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res. 79, 5355–5366 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lee, H. et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat. Cell Biol. 22, 225–234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Acoba, M. G., Senoo, N. & Claypool, S. M. Phospholipid ebb and flow makes mitochondria go. J. Cell Biol. 219, e202023131 (2020).

    Article  Google Scholar 

  184. Barger, S. R., Penfield, L. & Bahmanyar, S. Coupling lipid synthesis with nuclear envelope remodeling. Trends Biochem. Sci. 47, 52–65 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Zhang, H. L. et al. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat. Cell Biol. 24, 88–98 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Wu, Y. et al. Caveolae sense oxidative stress through membrane lipid peroxidation and cytosolic release of CAVIN1 to regulate NRF2. Dev. Cell 58, 376–397.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Cui, S. et al. Identification of hyperoxidized PRDX3 as a ferroptosis marker reveals ferroptotic damage in chronic liver diseases. Mol. Cell 83, 3931–3939.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  188. Rodencal, J. & Dixon, S. J. Positive feedback amplifies ferroptosis. Nat. Cell Biol. 24, 4–5 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Brown, C. W. et al. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev. Cell 51, 575–586.e4 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  190. Zhao, Y. et al. Neutrophils resist ferroptosis and promote breast cancer metastasis through aconitate decarboxylase 1. Cell Metab. 35, 1688–1703.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  191. Feng, H. et al. Transferrin receptor is a specific ferroptosis marker. Cell Rep. 30, 3411–3423.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Jia, M. et al. Redox homeostasis maintained by GPX4 facilitates STING activation. Nat. Immunol. 21, 727–735 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Xie, Y. et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 20, 1692–1704 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ryan, S. K. et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat. Neurosci. 26, 12–26 (2023).

    Article  CAS  PubMed  Google Scholar 

  197. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  198. Brown, C. W., Amante, J. J. & Mercurio, A. M. Cell clustering mediated by the adhesion protein PVRL4 is necessary for α6β4 integrin-promoted ferroptosis resistance in matrix-detached cells. J. Biol. Chem. 293, 12741–12748 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Dar, H. H. et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J. Clin. Invest. 128, 4639–4653 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Belavgeni, A. et al. vPIF-1 is an insulin-like antiferroptotic viral peptide. Proc. Natl Acad. Sci. USA 120, e2300320120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Jin, J. et al. Machine learning classifies ferroptosis and apoptosis cell death modalities with TfR1 immunostaining. ACS Chem. Biol. 17, 654–660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L. & Coyle, J. T. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547–1558 (1989).

    Article  CAS  PubMed  Google Scholar 

  204. Tan, S., Schubert, D. & Maher, P. Oxytosis: a novel form of programmed cell death. Curr. Top. Med. Chem. 1, 497–506 (2001).

    Article  CAS  PubMed  Google Scholar 

  205. Ratan, R. R., Murphy, T. H. & Baraban, J. M. Macromolecular synthesis inhibitors prevent oxidative stress-induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione. J. Neurosci. 14, 4385–4392 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wiernicki, B. et al. Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. Cell Death Dis. 11, 922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Skouta, R. et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc. 136, 4551–4556 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Poon, J. F., Zilka, O. & Pratt, D. A. Potent ferroptosis inhibitors can catalyze the cross-dismutation of phospholipid-derived peroxyl radicals and hydroperoxyl radicals. J. Am. Chem. Soc. 142, 14331–14342 (2020).

    Article  CAS  PubMed  Google Scholar 

  209. Hadian, K. & Stockwell, B. R. A roadmap to creating ferroptosis-based medicines. Nat. Chem. Biol. 17, 1113–1116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hendricks, J. M. et al. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis. Cell Chem. Biol. 30, 1090–1103.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  212. Nakamura, T. et al. Phase separation of FSP1 promotes ferroptosis. Nature 619, 371–377 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  213. Farmer, L. A. et al. Intrinsic and extrinsic limitations to the design and optimization of inhibitors of lipid peroxidation and associated cell death. J. Am. Chem. Soc. 144, 14706–14721 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Jelinek, A. et al. Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic. Biol. Med. 117, 45–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Fang, X. et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl Acad. Sci. USA 116, 2672–2680 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  216. Merkel, M. et al. Mitochondrial reactive oxygen species formation determines ACSL4/LPCAT2-mediated ferroptosis. Antioxidants 12, 1590 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Doulias, P. T., Christoforidis, S., Brunk, U. T. & Galaris, D. Endosomal and lysosomal effects of desferrioxamine: protection of HeLa cells from hydrogen peroxide-induced DNA damage and induction of cell-cycle arrest. Free Radic. Biol. Med. 35, 719–728 (2003).

    Article  CAS  PubMed  Google Scholar 

  218. Kurz, T., Gustafsson, B. & Brunk, U. T. Intralysosomal iron chelation protects against oxidative stress-induced cellular damage. FEBS J. 273, 3106–3117 (2006).

    Article  CAS  PubMed  Google Scholar 

  219. Fang, Y. et al. Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action. ACS Cent. Sci. 7, 980–989 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Xu, Y., Li, X., Cheng, Y., Yang, M. & Wang, R. Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion. FASEB J. 34, 16262–16275 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Li, Y. et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 26, 2284–2299 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ide, S. et al. Sex differences in resilience to ferroptosis underlie sexual dimorphism in kidney injury and repair. Cell Rep. 41, 111610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Yan, H. et al. Discovery of decreased ferroptosis in male colorectal cancer patients with KRAS mutations. Redox Biol. 62, 102699 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Jennis, M. et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev. 30, 918–930 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Leu, J. I., Murphy, M. E. & George, D. L. Functional interplay among thiol-based redox signaling, metabolism, and ferroptosis unveiled by a genetic variant of TP53. Proc. Natl Acad. Sci. USA 117, 26804–26811 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Magtanong, D. Pratt and members of the Dixon and Olzmann labs for discussion and comments on the manuscript. This work is supported by the National Institutes of Health (R01GM122923 to S.J.D. and R01GM112948 to J.A.O.) and the American Cancer Society (RSG-21-017-01 to S.J.D. and RSG-19-192-01 to J.A.O.). J.A.O. is a Chan Zuckerberg Biohub Investigator and is also supported by a Bakar Fellows Spark Award.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Scott J. Dixon or James A. Olzmann.

Ethics declarations

Competing interests

S.J.D. is a co-founder of Prothegen and a member of the scientific advisory board for Hillstream BioPharma. S.J.D. holds patents related to ferroptosis. J.A.O. is a member of the scientific advisory board for Vicinitas Therapeutics and holds patents related to ferroptosis.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Fudi Wang, José Pedro Friedmann Angeli and Qitao Ran for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Caveolae

Small invaginations of the plasma membrane enriched for certain lipids and proteins.

Endocytosis

The process of taking up materials from outside the cells into intracellular vesicles called endosomes. Endosomes can then transport materials within the cell to other compartments such as the lysosome.

Ether lipid

A class of phospholipid where one of the two fatty acyl chains is bound to the glycerol backbone by an ether bond rather than the more common ester bond. Ether lipids may contribute importantly to the execution of ferroptosis in some cells.

Ferritinophagy

The catabolism of iron-laden ferritin nanocages in the autophagolysosome to release free iron atoms.

Fe–S clusters

Iron–sulfur clusters are essential enzyme cofactors. Several different configurations of iron and sulfur atoms yield distinct types of clusters.

Integrated stress response

A gene expression programme that can help the cell respond to a shortage of individual amino acids by increasing the expression of membrane transporters and other metabolic enzymes that restore homeostasis.

Lipolysis

The enzymatic breakdown of triacylglycerol to glycerol and free fatty acids mediated by a series of lipases recruited to the lipid droplet surface.

Lipophagy

The breakdown of the lipid droplet, or a portion of the lipid droplet, through its delivery to the lysosome by a selective autophagic pathway.

Membrane contact sites

Regions of close proximity between two organelles that are often stabilized by protein tethers. These sites typically function as sites for the exchange of lipids and metabolites.

Monounsaturated fatty acids

(MUFAs). Fatty acid molecules that contain a single carbon–carbon double bond.

Necroptosis and pyroptosis

Two forms of non-apoptotic cell death that are biochemically distinct from each other and from ferroptosis.

Polyunsaturated fatty acid

(PUFA). Fatty acid molecule that contains multiple carbon–carbon double bonds, making it more sensitive to oxidative damage.

Reactive oxygen species

(ROS). An umbrella term for a number of small oxygen radicals and species that contain oxygen and which can easily form radical-containing species. Oxygen radicals that may initiate lipid peroxidation, leading to ferroptosis, include the hydroperoxyl radical (the conjugate acid of superoxide) and the hydroxyl radical, which itself can be formed from the Fenton reaction between hydrogen peroxide and iron.

Selenoprotein

One of a small number of proteins in mammalian cells that incorporate the unusual selenium-containing amino acid selenocysteine. Typically, these proteins are involved in some aspect of redox regulation in the cell.

Stimulator of interferon genes

(STING). A protein that can sense DNA in the cytosol and orchestrate a downstream immune response by binding to other signalling proteins.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixon, S.J., Olzmann, J.A. The cell biology of ferroptosis. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00703-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00703-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing