Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting Menin disrupts the KMT2A/B and polycomb balance to paradoxically activate bivalent genes

Abstract

Precise control of activating H3K4me3 and repressive H3K27me3 histone modifications at bivalent promoters is essential for normal development and frequently corrupted in cancer. By coupling a cell surface readout of bivalent MHC class I gene expression with whole-genome CRISPR–Cas9 screens, we identify specific roles for MTF2–PRC2.1, PCGF1–PRC1.1 and Menin–KMT2A/B complexes in maintaining bivalency. Genetic loss or pharmacological inhibition of Menin unexpectedly phenocopies the effects of polycomb disruption, resulting in derepression of bivalent genes in both cancer cells and pluripotent stem cells. While Menin and KMT2A/B contribute to H3K4me3 at active genes, a separate Menin-independent function of KMT2A/B maintains H3K4me3 and opposes polycomb-mediated repression at bivalent genes. Release of KMT2A from active genes following Menin targeting alters the balance of polycomb and KMT2A at bivalent genes, facilitating gene activation. This functional partitioning of Menin–KMT2A/B complex components reveals therapeutic opportunities that can be leveraged through inhibition of Menin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genome-scale CRISPR–Cas9 screens identify specific polycomb and KMT2 complex components regulating bivalent gene activation.
Fig. 2: PRC1.1 and PRC2.1 cooperate to restrict the activation of bivalent genes.
Fig. 3: Targeting Menin drives derepression of bivalent genes.
Fig. 4: Pharmacological inhibitors targeting the Menin–KMT2A/B interaction drive derepression of bivalent MHC-I genes in MHC-Ilow cancer cells and enhance T cell-mediated tumour killing.
Fig. 5: Targeting Menin alleviates polycomb-mediated repression of bivalent genes.
Fig. 6: Displacement of Menin from distant genomic loci activates bivalent gene expression.
Fig. 7: Opposing functions of KMT2A/B and Menin in the regulation of bivalent gene expression.
Fig. 8: Transcription factor binding bypasses the requirement of KMT2A/B for bivalent gene activation.

Similar content being viewed by others

Data availability

ChIP–seq, RNA-seq, CUT&Tag and CUT&RUN data that support the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under the accession code GSE181829. ChIP–seq data from the hESC H9 line were used from GEO accession nos GSE96336 and GSE96353, EZH2-null H9 hESC RNAs-seq data were from GEO accession no. GSE76626 and human induced pluripotent stem cell line iPS-20b ChIP–seq data from GEO accession nos GSM772844 and GSM772847. Source data are provided with this paper. All other data supporting the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Kuroda, M. I., Kang, H., De, S. & Kassis, J. A. Dynamic competition of polycomb and trithorax in transcriptional programming. Annu. Rev. Biochem. 89, 235–253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yu, J. R., Lee, C. H., Oksuz, O., Stafford, J. M. & Reinberg, D. PRC2 is high maintenance. Genes Dev. 33, 903–935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hughes, A. L., Kelley, J. R. & Klose, R. J. Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cenik, B. K. & Shilatifard, A. COMPASS and SWI/SNF complexes in development and disease. Nat. Rev. Genet. 22, 38–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Laugesen, A., Hojfeldt, J. W. & Helin, K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol. Cell 74, 8–18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bracken, A. P., Brien, G. L. & Verrijzer, C. P. Dangerous liaisons: interplay between SWI/SNF, NuRD, and polycomb in chromatin regulation and cancer. Genes Dev. 33, 936–959 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao, R. et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conway, E. et al. A family of vertebrate-specific polycombs encoded by the LCOR/LCORL genes balance PRC2 subtype activities. Mol. Cell 70, 408–421 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Hojfeldt, J. W. et al. Non-core subunits of the PRC2 complex are collectively required for its target-site specificity. Mol. Cell 76, 423–436 (2019).

    Article  PubMed  Google Scholar 

  15. Oksuz, O. et al. Capturing the onset of PRC2-mediated repressive domain formation. Mol. Cell 70, 1149–1162 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hauri, S. et al. A high-density map for navigating the human polycomb complexome. Cell Rep. 17, 583–595 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344–356 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morey, L., Aloia, L., Cozzuto, L., Benitah, S. A. & Di Croce, L. RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells. Cell Rep. 3, 60–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Fursova, N. A. et al. Synergy between variant PRC1 complexes defines polycomb-mediated gene repression. Mol. Cell 74, 1020–1036 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157, 1445–1459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Scelfo, A. et al. Functional landscape of PCGF proteins reveals both RING1A/B-dependent- and RING1A/B-independent-specific activities. Mol. Cell 74, 1037–1052 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu, D. et al. The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1093–1097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Denissov, S. et al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 141, 526–537 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Comet, I., Riising, E. M., Leblanc, B. & Helin, K. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat. Rev. Cancer 16, 803–810 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Michalak, E. M., Burr, M. L., Bannister, A. J. & Dawson, M. A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. 20, 573–589 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Dawson, M. A. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science 355, 1147–1152 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Burr, M. L. et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36, 385–401 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan, H. et al. A conserved BAH module within mammalian BAHD1 connects H3K27me3 to polycomb gene silencing. Nucleic Acids Res. 49, 4441–4455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao, D. et al. The BAH domain of BAHD1 is a histone H3K27me3 reader. Protein Cell 7, 222–226 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bierne, H. et al. Human BAHD1 promotes heterochromatic gene silencing. Proc. Natl Acad. Sci. USA 106, 13826–13831 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boehm, J. S. et al. Cancer research needs a better map. Nature 589, 514–516 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grijzenhout, A. et al. Functional analysis of AEBP2, a PRC2 polycomb protein, reveals a Trithorax phenotype in embryonic development and in ESCs. Development 143, 2716–2723 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, S., Jiao, L., Liu, X., Yang, X. & Liu, X. A dimeric structural scaffold for PRC2–PCL targeting to CpG island chromatin. Mol. Cell 77, 1265–1278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Youmans, D. T., Gooding, A. R., Dowell, R. D. & Cech, T. R. Competition between PRC2.1 and 2.2 subcomplexes regulates PRC2 chromatin occupancy in human stem cells. Mol. Cell 81, 488–501 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Junco, S. E. et al. Structure of the polycomb group protein PCGF1 in complex with BCOR reveals basis for binding selectivity of PCGF homologs. Structure 21, 665–671 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Agarwal, S. K. et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 96, 143–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Huang, J. et al. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature 482, 542–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yokoyama, A. et al. The Menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123, 207–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Yokoyama, A. & Cleary, M. L. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14, 36–46 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Borkin, D. et al. Pharmacologic inhibition of the Menin–MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell 27, 589–602 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krivtsov, A. V. et al. A Menin–MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. Cancer Cell 36, 660–673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, L. et al. CRISPR–Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J. Clin. Invest. 128, 446–462 (2018).

    Article  PubMed  Google Scholar 

  44. George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sutherland, K. D. et al. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell 19, 754–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Mollaoglu, G. et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell 31, 270–285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sheng, W. et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174, 549–563 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Durbin, J. E., Hackenmiller, R., Simon, M. C. & Levy, D. E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–450 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Heppner, C. et al. The tumor suppressor protein menin interacts with NF-κB proteins and inhibits NF-κB-mediated transactivation. Oncogene 20, 4917–4925 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Mas, G. et al. Promoter bivalency favors an open chromatin architecture in embryonic stem cells. Nat. Genet. 50, 1452–1462 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Pan, G. et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1, 299–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Gifford, C. A. et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153, 1149–1163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23, 4061–4071 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32, 491–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chamberlain, S. J., Yee, D. & Magnuson, T. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26, 1496–1505 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Pasini, D., Bracken, A. P., Hansen, J. B., Capillo, M. & Helin, K. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol. 27, 3769–3779 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Collinson, A. et al. Deletion of the polycomb-group protein EZH2 leads to compromised self-renewal and differentiation defects in human embryonic stem cells. Cell Rep. 17, 2700–2714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vlahos, K. et al. Generation of iPSC lines from peripheral blood mononuclear cells from 5 healthy adults. Stem Cell Res. 34, 101380 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Loh, K. M. et al. Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166, 451–467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Skelton, R. J. P., Kamp, T. J., Elliott, D. A. & Ardehali, R. Biomarkers of human pluripotent stem cell-derived cardiac lineages. Trends Mol. Med. 23, 651–668 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Brown, D. A. et al. The SET1 complex selects actively transcribed target genes via multivalent interaction with CpG island chromatin. Cell Rep. 20, 2313–2327 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu, M. et al. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol. Cell. Biol. 28, 7337–7344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stafford, J. M. et al. Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Sci. Adv. 4, eaau5935 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Harutyunyan, A. S. et al. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat. Commun. 10, 1262 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kobayashi, K. S. & van den Elsen, P. J. NLRC5: a key regulator of MHC class I-dependent immune responses. Nat. Rev. Immunol. 12, 813–820 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Farcas, A. M. et al. KDM2B links the polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLife 1, e00205 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wu, X., Johansen, J. V. & Helin, K. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49, 1134–1146 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Li, H. et al. Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549, 287–291 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hojfeldt, J. W. et al. Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nat. Struct. Mol. Biol. 25, 225–232 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Perino, M. et al. MTF2 recruits polycomb repressive complex 2 by helical-shape-selective DNA binding. Nat. Genet. 50, 1002–1010 (2018).

    Article  CAS  Google Scholar 

  74. Tamburri, S. et al. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol. Cell 77, 840–856 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Blackledge, N. P. et al. PRC1 catalytic activity is central to polycomb system function. Mol. Cell 77, 857–874 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hu, D. et al. Not all H3K4 methylations are created equal: Mll2/COMPASS dependency in primordial germ cell specification. Mol. Cell 65, 460–475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van Nuland, R. et al. Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes. Mol. Cell. Biol. 33, 2067–2077 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chen, Y. et al. Distinct pathways affected by menin versus MLL1/MLL2 in MLL-rearranged acute myeloid leukemia. Exp. Hematol. 69, 37–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Xu, J. et al. MLL1 and MLL1 fusion proteins have distinct functions in regulating leukemic transcription program. Cell Discov. 2, 16008 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mendenhall, E. M. et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet. 6, e1001244 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Thomson, J. P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Singh, A. M. et al. Cell-cycle control of bivalent epigenetic domains regulates the exit from pluripotency. Stem Cell Rep. 5, 323–336 (2015).

    Article  CAS  Google Scholar 

  83. Konig, R. et al. A probability-based approach for the analysis of large-scale RNAi screens. Nat. Methods 4, 847–849 (2007).

    Article  PubMed  Google Scholar 

  84. Zhang, J. et al. An integrative ENCODE resource for cancer genomics. Nat. Commun. 11, 3696 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hughes, C. M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell 13, 587–597 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Diebold, S. S., Cotten, M., Koch, N. & Zenke, M. MHC class II presentation of endogenously expressed antigens by transfected dendritic cells. Gene Ther. 8, 487–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Morgens, D. W. et al. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nat. Commun. 8, 15178 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Martin, M. CUTADAPT removes adapter sequences from high-throughput sequencing reads. EMBnet.journal https://doi.org/10.14806/ej.17.1.200 (2011).

  90. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Koike-Yusa, H., Li, Y., Tan, E. P., Velasco-Herrera Mdel, C. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Aubrey, B. J. et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep. 10, 1422–1432 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv https://doi.org/10.48550/arXiv.1303.3997 (2013).

  100. Zhang, Y. et al. Model-based analysis of ChIP–Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kurtenbach, S. & William Harbour, J. SparK: a Publication-quality NGS visualization tool. Preprint at bioRxiv https://doi.org/10.1101/845529 (2019).

Download references

Acknowledgements

We thank the Peter MacCallum Cancer Centre Molecular Genomics Core and the flow cytometry facility. We thank the following funders for fellowship, scholarship and grant support: Snow Medical Research Foundation Fellowship (M.L.B. and M.E.-M.), Cancer Research UK Clinician Scientist Fellowship C53779/A20097 and NHMRC Investigator Grant 1196598 (M.L.B.), Sir Edward Dunlop Fellowship, Cancer Council of Victoria, NHMRC Investigator Grant 1196749 and Howard Hughes Medical Institute International Research Scholarship 55008729 (M.A.D.), CSL Centenary Fellowship and NHMRC Investigator Grant 1196755 (S.-J.D.), Peter and Julie Alston Centenary fellowship (K.D.S.), Wellcome Trust Principal Research Fellowship 101835/Z/13/Z (P.J.L.), Peter MacCallum Postgraduate Scholarship (C.E.S.), NHMRC Postgraduate Scholarship (K.L.C.), Maddie Riewoldt’s Vision 064728 (Y.-C.C.), Victorian Cancer Agency (E.Y.N.L.), VCA Mid-Career Fellowship MCRF19033 (D.J.G.), CSL Centenary Fellowship (S.-J.D.) and NHMRC grants 1164054 and 2010275 (M.L.B.), 1085015 and 1106444 (M.A.D.), and 1128984 (M.A.D. and S.-J.D.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Schematics in Fig. 1a,d, Fig. 4b and Extended Data Fig. 10a were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

M.L.B. and M.A.D. conceived, designed and supervised the research and wrote the manuscript. C.E.S. designed the research, conducted experiments, analysed data and helped write the manuscript. J.G., N.K., K.L.C., A.M., C.C.B., O.G. and S.P. conducted experiments, analysed data and provided expertise. C.E.S. conducted the CRISPR screens. A.G. and E.Y.N.L. led the analysis of the genomic data and CRISPR screens with contributions from Y.-C.C. K.D.S., D.J.G., M.A.E.-M., S.-J.D., P.J.L., P.E. and G.M.M. provided critical expertise and/or reagents and contributed to manuscript preparation.

Corresponding authors

Correspondence to Marian L. Burr or Mark A. Dawson.

Ethics declarations

Competing interests

M.A.D. has been a member of advisory boards for GSK, CTX CRC, Storm Therapeutics, Celgene and Cambridge Epigenetix. The Dawson Laboratory is a recipient of grant funding through the emerging science fund administered through Pfizer. S.J.D. has been a member of advisory boards for Adela and Inivata. P.E. owns Amgen stocks (less than 5% value of the company) and has undertaken previous consulting for Servier (less than $10,000). G.M.M. is employed by Syndax Pharmaceuticals. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Yali Dou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 MHC-I genes harbour bivalent H3K4me3 and H3K27me3 modifications.

a, Genomic snapshots of MHC-I genes showing H3K4me3 and H3K27me3 CUT&Tag in K-562 and ChIP–seq in neuroblastoma KELLY cell lines. The K-562 tracks are also shown in the control cells in Fig. 2h and H3K27me3 control cells in Fig. 6f. b,c, Cell surface MHC-I in K-562 (left) and KELLY (right) cells following treatment with EPZ-011989 and (c) ± 10 ng ml−1 IFN-γ (48 h K-562; 24 h KELLY). d, Genomic snapshots of MHC-I genes showing ChIP–seq for H3K4me3, H3K27me3 and H3K27ac in KELLY cells treated with ethanol (control) or EPZ-011989 ± IFN-γ. e,f, ChIP reChIP–seq of single H3K27me3, single H3K4me3 and reChIP (H3K27me3 and H3K4me3) in K-562 cells. e, Genomic snapshots of bivalent MHC-I genes. f, Heatmaps show bivalent genes −3 kb TSS/+3 kb TES, with genomic regions ordered by H3K27me3 read density in the single H3K27me3 ChIP sample. b,c, Representative plots from three experiments (Supplementary Fig. 3).

Source data

Extended Data Fig. 2 Genome-wide CRISPR–Cas9 screen identifies regulators of MHC-I expression.

a, Cell surface MHC-I, pan-HLA-A,B,C (top)- and HLA-B (bottom)-specific antibodies in K-562 Cas9 cells treated with the indicated IFN-γ doses for 24 h. b, K-562 cells stably expressing Cas9 were mutagenized by infection with a pooled lentiviral sgRNA library and treated with 1 ng ml−1 IFN-γ for 24 h prior to FACS sorting. Rare MHC-I high cells were enriched by two successive rounds of FACS sorting for mCherry+ (containing sgRNA vector) MHC-I+ cells. FACS dot plots and histograms show MHC-I expression in unsorted, post sort 1 and post sort 2 in K-562 Cas9 cells transduced with the CRIPSR sgRNA library and sorted with either pan-HLA-A,B,C (top)- or HLA-B (bottom)-specific antibodies. c, Table depicting correlation between CRISPR gene-effect scores (Fig. 1e) for top-20 shared EZH2 and EED co-dependent genes calculated from combined CRISPR survival screens in 990 cancer cell lines in Cancer Dependency Map (https://depmap.org/portal/)31,32. Table indicates Pearson’s correlation coefficients. d,e, Immunoblots of K-562 Cas9 cells transduced with control and MTF2 (d) or AEBP2 (e) sgRNA. f, H3K4me3 and H3K27me3 CUT&Tag. Genomic snapshots of bivalent MHC-I genes in K-562 cells transduced with control, MTF2 and AEBP2 sgRNA. The H3K4me3 control tracks are the same control tracks in Fig. 7c. g, Cell surface MHC-I in K-562 Cas9 cells transduced with control or BAHD1-specific sgRNAs and treated with 10 ng ml−1 IFN-γ for 48 h. Representative plots from three experiments (Supplementary Fig. 3). h, Knockout scores of individual sgRNA targeting BAHD1 measured using Synthego Performance Analysis, Interference of CRISPR editing (ICE) Analysis.

Source data

Extended Data Fig. 3 Loss of PRC1 drives derepression of bivalent genes.

a, Immunoblot of K-562 Cas9, PCGF1-KO and EED-KO cells ± 10 ng ml−1 IFN-γ (40 h). b,c, Cell surface MHC-I in K-562 Cas9 cells transduced with either control or PCGF1 sgRNA. c, Mean percentage of MHC-I expression from three experiments, indicated by points. Unpaired two-tailed Student’s t-test, P = 0.0295. d, qRT-PCR for MHC-I genes in K-562 Cas9 cells transduced with control or PCGF1 sgRNA. Bars indicate mean ± s.d. of technical triplicates from a representative experiment. e, Cell surface MHC-I in EED-KO cells transduced with control or MTF2 sgRNA. Representative plot from three experiments (Supplementary Fig. 3). f, Immunoblot of K-562 Cas9 and EED-KO cells transduced with control and PCGF1 sgRNA. g,h, Cell surface MHC-I in K-562 Cas9 cells transduced with RING1A and/or RING1B sgRNA, following treatment with 10 ng ml−1 IFN-γ for 36 h. h, Bars show mean fold change in MFI from 3–5 experiments, indicated by points. Unpaired two-tailed Student’s t-test, P values are indicated. i, Immunoblot of K-562 Cas9 cells transduced with the indicated sgRNA. j, Genomic snapshots of bivalent MHC-I genes showing H3K4me3, H3K27me3 and H2AK119Ub CUT&Tag in K-562 Cas9 (control), EED-KO and PCGF1-KO cells. The H3K4me3 and H3K27me3 control tracks are the same control tracks in Fig. 6f. k, H2AK119Ub CUT&Tag in K-562 cells transduced with control or MTF2 sgRNA. Heatmaps show bivalent genes −3kb TSS/+3 kb TES. Genomic regions are ordered by H2AK119Ub read density in the control sample.

Source data

Extended Data Fig. 4 Depletion of Menin or LEDGF enhances basal and IFN-γ-induced bivalent MHC-I gene expression.

a,b, Cell surface MHC-I in K-562 Cas9 cells transduced with control, MEN1 or PSIP1 sgRNA. b, Bars show mean percentage of MHC-I expression from three experiments, indicated by points. Unpaired two-tailed Student’s t-test, significant changes are indicated, P = 0.0356. c, qRT-PCR for MHC-I genes in K-562 Cas9 cells transduced with control or MEN1 sgRNA. Bars indicate mean ± s.d. of technical triplicates from a representative experiment. d, Immunoblot of K-562 Cas9, MEN1-KO and PSIP1-KO cells ± 10 ng ml−1 IFN-γ for 40 h. e, Cell surface MHC-I in K-562 Cas9 cells transduced with control or the indicated sgRNA targeting MEN1. f,g, Immunoblots of K-562 Cas9 cells transduced with control sgRNA or sgRNA targeting MEN1 (f), MEN1-KO cells ± MEN1 cDNA (g). h,i, JunD is not required for enhanced MHC-I expression following MEN1 KO. K-562 Cas9 and MEN1-KO cells transduced with control or JunD sgRNA and analysed by flow cytometry following treatment with 10 ng ml−1 IFN-γ for 48 h (h) and immunoblot (i). h, Representative plots from three experiments (Supplementary Fig. 3).

Source data

Extended Data Fig. 5 Pharmacological targeting of Menin–KMT2A/B and PRC2 similarly augment IFN-γ-induced MHC-I expression in MHC-Ilow cancers and enhance T cell-mediated killing.

a, qRT-PCR analysis of K-562 cells treated ± 500 nM VTP50469. Bars indicate the mean ± s.d. of technical triplicates. b, MI-503, a chemically distinct inhibitor of the Menin–MLL interaction, also enhanced IFN-γ induced MHC-I expression. Cell surface MHC-I in K-562 Cas9 cells pre-treated with 500 nM MI-503 and 10 ng ml−1 IFN-γ (48 h). Representative plot from three experiments (Supplementary Fig. 3). c, Cell surface MHC-I in cells treated with DMSO or 3 µM EPZ-011989 and 10 ng ml−1 IFN-γ (24 h SCLC, 40 h KELLY), (VTP50469 treatment: Fig. 4a). Representative plots from independent experiments (n = 2 SCLC, n = 3 KELLY (Supplementary Fig. 3)). d, Cell surface MHC-I expression in SCLC cells treated with DMSO, 1 µM VTP50469 or 3 µM EPZ-011989 and 10 ng ml−1 IFN-γ for 24 h. Representative plots from two experiments (Supplementary Fig. 3). e, Scatter plot indicating MEN1 and EED CERES gene perturbation effects for neuroblastoma cell lines evaluated in combined CRISPR screens in DepMap (DepMap 21Q2 Public+Score, CERES (https://depmap.org/portal/)31,32. f, Flow cytometry analysis of RP-48-OVA cells pre-treated with DMSO or 1 µM VTP50469 and 10 ng ml−1 murine IFN-γ (24 h) prior to co-culture with OVA antigen-specific OT-I T cells at the indicated effector:target (E:T) ratios. Bars indicate mean percent remaining mCherry+ (RP-48-OVA) cells compared with no T cell control from three independent replicates, indicated by points. Unpaired two-tailed Student’s t-tests compared with the respective DMSO controls. Significant changes are indicated. g, Cytometric Beads Array (CBA) assay for mIFN-γ following 24 h co-culture of RP-48-OVA cells pre-treated with DMSO or 1 µM VTP50469 and 10 ng ml−1 murine IFN-γ (24 h) prior to co-culture with OVA antigen-specific OT-I T cells at a 2:1 (E:T) ratio. Bars show mean expression from 2–3 independent replicates, indicated by points. Unpaired two-tailed Student’s t-test, P = 0.01. h, Cell surface MHC-I in SPC-545-OVA cells pre-treated with DMSO, 1 µM VTP50469 and/or 3 µM EPZ-011989, and 1 ng ml−1 murine IFN-γ (24 h). Representative plot from two experiments (Supplementary Fig. 3). i, CBA assay for mIFN-γ and TNF following 4 d of co-culture of pre-treated SPC-545-OVA cells (DMSO, 1 µM VTP50469 and/or 3 µM EPZ-011989 and 2 h 20 ng ml−1 mIFN-γ) with OVA antigen-specific OT-I T cells at a 2:1 (E:T) ratio. Bars show mean expression from three independent replicates, indicated by points. Unpaired two-tailed Student’s t-test compared with the respective DMSO + mIFN-γ controls. Significant changes are indicated.

Source data

Extended Data Fig. 6 Targeting Menin drives expression of bivalent genes independently of IFN and NF-κB signalling.

a,b, Immunoblot in K-562 EED-KO cells depleted of MEN1 and PSIP1 (a) or PCGF1 (b) and then transduced with the indicated sgRNA. c, Immunoblot in K-562 Cas9 and EED-KO cells transduced with the indicated sgRNA and treated ± 10 ng ml−1 IFN-γ for 48 h. dh, K-562 EED-KO cells depleted of MEN1, PSIP1 or PCGF1 and transduced with the indicated sgRNA, analysed by flow cytometry (d,f), and immunoblot (e,g,h). i, Immunoblot of K-562 Cas9 and EED-KO cells transduced with the indicated sgRNA and treated ± 20 ng ml−1 TNF-α for 48 h. j, Cell surface MHC-I expression in K-562 EED-KO cells transduced with control or PCGF1 sgRNA and treated ± 25 ng ml−1 IFN-γ for 24 h. d,f,j, Representative plots from three experiments (Supplementary Fig. 3).

Source data

Extended Data Fig. 7 Loss of Menin alleviates repression of bivalent genes.

a, Volcano plot showing log2FC gene expression from RNA-seq data in K-562 cells expressing MEN1 sgRNA compared with control sgRNA. Selected MHC class I genes are labelled. Two-sided Wald test; P values adjusted for multiple testing. b, Venn diagram depicting overlap in genes downregulated (Padj < 0.05 and fold change > 2) after CRISPR deletion of MEN1, PSIP1 or EED. c, Venn diagrams depicting overlap in genes up- and downregulated (Padj < 0.05 and fold change > 2) after CRISPR deletion of MEN1 or PSIP1, or 500 nM VTP50469 treatment. d, Pharmacological inhibition of Menin–KMT2A/B induces genome-wide displacement of Menin from chromatin. Menin ChIP–seq in K-562 cells treated for 48 h with DMSO or 1 µM VTP50469. Average profile plots (top) and heatmaps (bottom) of Menin-occupied sites −3kb TSS/+3 kb TES. Genomic regions are ordered by Menin occupancy in the control sample. e,f, Immunoblots of K-562 Cas9 (control), MEN1-KO, PSIP1-KO and PCGF1-KO cells. g, Genomic snapshots of MHC-I genes from SUZ12 ChIP–seq data in K-562 Cas9 control and MEN1-KO cells. h, Genomic snapshots of H3K4me3, SUZ12 ChIP–seq and H3K27me3 CUT&Tag in K-562 Cas9 control and MEN1-KO cells.

Source data

Extended Data Fig. 8 Targeting Menin potentiates bivalent gene derepression in human pluripotent stem cells.

a, RNA-seq in H9 hESCs treated with DMSO, 1 µM VTP50469 and/or 3 µM EPZ-011989 for 5 d. Heatmap includes bivalent genes significantly up- or downregulated in combination Menin/EZH2 inhibitor-treated cells compared with DMSO control (Padj < 0.05 and log2FC >1 or <−1). b,c, RNA-seq in wild-type (WT), EZH2-null (EZH2−/−) and EZH2-complemented EZH2-null (EZH2−/− + EZH2) H9 hESCs (GEO: GSE76626)60. b, Boxplots include the top upregulated bivalent genes in combination with Menin + EZH2 inhibitor-treated H9 hESCs (log2FC > 4 compared with the DMSO control) and depict median log2FC in expression in EZH2-null or EZH2-complemented H9 hESCs compared with the wild-type control60. Whiskers represent the minimum and maximum, the box represents the interquartile range and the centre line represents the median. c, Heatmap shows log2FC in expression of selected germ layer-specific genes in either EZH2-null or EZH2-complemented H9 hESCs compared with the wild-type control60. d, Heatmap shows log2FC in expression of selected germ layer-specific genes in H9 hESCs treated with 1 µM VTP50469 and/or 3 µM EPZ-011989 compared with the DMSO control. e,f, ChIP–seq of H9 hESCs. Genomic snapshots showing data from KMT2A (e), and KMT2A, H3K4me3 (GEO: GSE96336) and H3K27me3 (GEO: GSE96353)84 (f).

Extended Data Fig. 9 KMT2A/B is required for basal MHC-I expression.

a, Cell surface MHC-I in K-562 Cas9 cells transduced with KMT2A or KMT2B sgRNA compared with control sgRNA and treated with 10 ng ml−1 IFN-γ for 48 h. Bars show mean percentage of MHC-I expression from three experiments, indicated by points. Unpaired two-tailed Student’s t-test compared with control sgRNA. Significant changes are indicated; P < 0.0001. b,c, Immunoblots in K-562 Cas9 and KMT2B-KO cells (b), and KMT2A-KO ± KMT2B-KO cells (c). d, Cell surface MHC-I in K-562 KMT2B + PCGF1-KO cells transduced with the indicated sgRNA and treated for 5 d with DMSO, 1 µM VTP50469 or 3 µM EPZ-011989. Representative plot from three experiments (Supplementary Fig. 3). e, Genomic snapshots of H3K4me3 CUT&Tag in K-562 Cas9 and KMT2A/B-KO cells treated ± EPZ-011989. The EZH2i-treated (no IFN-γ) track is also shown in Fig. 8g. f, Immunoblots in K-562 Cas9, MEN1-KO and KMT2A-KO cells. gi, Genomic snapshots of K-562 Cas9 and MEN1-KO cells (g,h) H3K4me3 ChIP–seq and KMT2A CUT&RUN (i). The H3K4me3 tracks are also shown in Extended Data Fig. 7h.

Source data

Extended Data Fig. 10 KMT2A/B is dispensable for MHC enhanceosome-driven activation.

a, Schematic overview of cis-regulatory elements in the MHC-I promoter. NLRC5 forms an enhanceosome with the RFX (regulatory factor X) complex, made up of RFX5, RFXANK and RFAXP (RFX-associated ankyrin-containing protein); CREB (cAMP-responsive-element-binding); and NFY (nuclear transcription factor Y), which bind the SXY-molecule to activate transcription of MHC-I. b, Immunoblot of K-562 Cas9 cells transduced with control and RFX5 sgRNA. c, IFN-γ time course in K-562 Cas9 and the indicated KO cells treated with 3 µM EPZ-011989 and 25 ng ml−1 IFN-γ for the indicated time periods. d, Immunoblot of K-562 Cas9 and KMT2A/B-KO cells transduced with control, SETD1A and/or SETD1B sgRNA.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Reporting Summary

Peer Review File

Supplementary Tables 1–7

Supplementary Tables 1–7. Supplementary Tables 1–3. CRISPR screen results. Related to Fig. 1. Supplementary Table 4. Gene lists for RNA-seq data. Related to Fig. 6 and Extended Data Fig. 7. Supplementary Table 5. Gene list intersection of CRISPR screen and RNA-seq results. Supplementary Tables 6 and 7. Primer sequences.

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 3

Source data.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 4

Source data.

Source Data Fig. 5

Source data.

Source Data Fig. 5

Unprocessed western blots.

Source Data Fig. 6

Source data.

Source Data Fig. 7

Source data.

Source Data Fig. 8

Source data.

Source Data Fig. 8

Unprocessed western blots.

Source Data Extended Data Fig. 1

Source data.

Source Data Extended Data Fig. 2

Source data.

Source Data Extended Data Fig. 2

Unprocessed western blots.

Source Data Extended Data Fig. 3

Source data.

Source Data Extended Data Fig. 3

Unprocessed western blot.

Source Data Extended Data Fig. 4

Source data.

Source Data Extended Data Fig. 4

Unprocessed western blots.

Source Data Extended Data Fig. 5

Source data.

Source Data Extended Data Fig. 6

Source data.

Source Data Extended Data Fig. 6

Unprocessed western blots.

Source Data Extended Data Fig. 7

Unprocessed western blots.

Source Data Extended Data Fig. 9

Source data.

Source Data Extended Data Fig. 9

Unprocessed western blots.

Source Data Extended Data Fig. 10

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sparbier, C.E., Gillespie, A., Gomez, J. et al. Targeting Menin disrupts the KMT2A/B and polycomb balance to paradoxically activate bivalent genes. Nat Cell Biol 25, 258–272 (2023). https://doi.org/10.1038/s41556-022-01056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-022-01056-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer