Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KCNQ1OT1 promotes genome-wide transposon repression by guiding RNA–DNA triplexes and HP1 binding

Abstract

Transposon (de)repression and heterochromatin reorganization are dynamically regulated during cell fate determination and are hallmarks of cellular senescence. However, whether they are sequence specifically regulated remains unknown. Here we uncover that the KCNQ1OT1 lncRNA, by sequence-specific Hoogsteen base pairing with double-stranded genomic DNA via its repeat-rich region and binding to the heterochromatin protein HP1α, guides, induces and maintains epigenetic silencing at specific repetitive DNA elements. Repressing KCNQ1OT1 or deleting its repeat-rich region reduces DNA methylation and H3K9me3 on KCNQ1OT1-targeted transposons. Engineering a fusion KCNQ1OT1 with an ectopically targeting guiding triplex sequence induces de novo DNA methylation at the target site. Phenotypically, repressing KCNQ1OT1 induces senescence-associated heterochromatin foci, transposon activation and retrotransposition as well as cellular senescence, demonstrating an essential role of KCNQ1OT1 to safeguard against genome instability and senescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The lncRNA KCNQ1OT1 binds HP1 and suppresses H3K9me3 foci.
Fig. 2: Genomic targets of KCNQ1OT1 lncRNA and overlap with heterochromatin marks in HEK293T cells.
Fig. 3: Repeat-rich and non-repeat-rich regions of KCNQ1OT1 have different protein interactomes.
Fig. 4: Decreased DNA methylation and increased L1 transposition in K rep KO HEK293T cells.
Fig. 5: KCNQ1OT1 target genomic sequences are guided by RNA–dsDNA triplex.
Fig. 6: The RNA–dsDNA triplex contributes to KCNQ1OT1 binding to genomic DNA.
Fig. 7: KCNQ1OT1 repression induces cellular senescence.

Similar content being viewed by others

Data availability

Sequencing data that support the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under the accession code GSE208017. The protein mass spectrometry data have been deposited to ProteomeXchange under the accession code PXD035996. Previously published data that were reanalysed here are available: KCNQ1OT1 expression in the human brain (National Omics Data Encyclopedia, OEP001041) and blood (GEO, GSE106670), H3K9me2 ChIP–seq data in HEK293T cells (GEO, GSE67317), H3K27me3 ChIP–seq data in HEK293T cells (GEO, GSE97326), and RNA-seq data in proliferating, early senescent and deep senescent human lung fibroblast cells (GEO, GSE109700). Source data are provided with this paper. All other data supporting the findings of this study are available from the corresponding author on reasonable request.

Code availability

The WinMine package was used for Bayesian network inference. Triplex Domain Finder characterizes the triplex-forming potential between RNA and DNA regions47. For high-confidence protein–lncRNA interactions analyses, MiST (https://github.com/kroganlab/mist), SAINTexpress (v3.6.3), BioGRID database (release 4.1.190) and the CORUM database (accessed 24 December 2020) were used40,41,47,58,59.

References

  1. De Cecco, M. et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12, 247–256 (2013).

    Article  PubMed  Google Scholar 

  2. Muotri, A. R. et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903–910 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Becker, J. S., Nicetto, D. & Zaret, K. S. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet. 32, 29–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, R. & Adams, P. D. Heterochromatin and its relationship to cell senescence and cancer therapy. Cell Cycle 6, 784–789 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Chandra, T. et al. Global reorganization of the nuclear landscape in senescent cells. Cell Rep. 10, 471–483 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kane, A. E. & Sinclair, D. A. Epigenetic changes during aging and their reprogramming potential. Crit. Rev. Biochem. Mol. Biol. 54, 61–83 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Johnson, W. L. & Straight, A. F. RNA-mediated regulation of heterochromatin. Curr. Opin. Cell Biol. 46, 102–109 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, C. K. et al. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 354, 468–472 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Deng, Z., Norseen, J., Wiedmer, A., Riethman, H. & Lieberman, P. M. TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol. Cell 35, 403–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu, W. L. et al. GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat. Cell Biol. 20, 492–502 (2018).

    Article  PubMed  Google Scholar 

  11. Abdelmohsen, K. & Gorospe, M. Noncoding RNA control of cellular senescence. Wiley Interdiscip. Rev. RNA 6, 615–629 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghanam, A. R. et al. Shining the light on senescence associated lncRNAs. Aging Dis. 8, 149–161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grammatikakis, I., Panda, A. C., Abdelmohsen, K. & Gorospe, M. Long noncoding RNAs (lncRNAs) and the molecular hallmarks of aging. Aging 6, 992–1009 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cai, D. & Han, J.-D.J. Aging-associated lncRNAs are evolutionarily conserved and participate in NFκB signaling. Nat. Aging 1, 438–453 (2021).

    Article  Google Scholar 

  15. Su, M., Han, D., Boyd-Kirkup, J., Yu, X. & Han, J. J. Evolution of Alu elements toward enhancers. Cell Rep. 7, 376–385 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Smilinich, N. J. et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith–Wiedemann syndrome. Proc. Natl Acad. Sci. USA 96, 8064–8069 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mancini-Dinardo, D., Steele, S. J., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 20, 1268–1282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kanduri, C. Kcnq1ot1: a chromatin regulatory RNA. Semin. Cell Dev. Biol. 22, 343–350 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Paulsen, M., Khare, T., Burgard, C., Tierling, S. & Walter, J. Evolution of the Beckwith–Wiedemann syndrome region in vertebrates. Genome Res. 15, 146–153 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mohammad, F. et al. Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol. Cell. Biol. 28, 3713–3728 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fitzpatrick, G. V., Soloway, P. D. & Higgins, M. J. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32, 426–431 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Horike, S. et al. Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith–Wiedemann syndrome. Hum. Mol. Genet. 9, 2075–2083 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Mohammad, F., Mondal, T., Guseva, N., Pandey, G. K. & Kanduri, C. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137, 2493–2499 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Elcheva, I. A. & Spiegelman, V. S. The role of cis- and trans-acting RNA regulatory elements in leukemia. Cancers 12, 3854 (2020).

  26. Alekseyenko, A. A. et al. Heterochromatin-associated interactions of Drosophila HP1a with dADD1, HIPP1, and repetitive RNAs. Genes Dev. 28, 1445–1460 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muchardt, C. et al. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep. 3, 975–981 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322, 1717–1720 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Frank, S. et al. yylncT defines a class of divergently transcribed lncRNAs and safeguards the T-mediated mesodermal commitment of human PSCs. Cell Stem Cell 24, 318–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sachani, S. S. et al. Nucleoporin 107, 62 and 153 mediate Kcnq1ot1 imprinted domain regulation in extraembryonic endoderm stem cells. Nat. Commun. 9, 2795 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bizhanova, A. & Kaufman, P. D. Close to the edge: heterochromatin at the nucleolar and nuclear peripheries. Biochim. Biophys. Acta Gene Regul. Mech. 1864, 194666 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Padeken, J. & Heun, P. Nucleolus and nuclear periphery: velcro for heterochromatin. Curr. Opin. Cell Biol. 28, 54–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Thakore, P. I. et al. Highly specific epigenome editing by CRISPR–Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chu, C. & Chang, H. Y. Understanding RNA–chromatin interactions using chromatin isolation by RNA purification (ChIRP). Methods Mol. Biol. 1480, 115–123 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Teo, G. et al. SAINTexpress: improvements and additional features in significance analysis of INTeractome software. J. Proteom. 100, 37–43 (2014).

    Article  CAS  Google Scholar 

  41. Jager, S. et al. Global landscape of HIV–human protein complexes. Nature 481, 365–370 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Streva, V. A., Faber, Z. J. & Deininger, P. L. LINE-1 and Alu retrotransposition exhibit clonal variation. Mob. DNA 4, 16 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ohsawa, R., Seol, J. H. & Tyler, J. K. At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence. Front Genet. 4, 136 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dewannieux, M., Esnault, C. & Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35, 41–48 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Thomas, C. A. et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 21, 319–331 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andrenacci, D., Cavaliere, V. & Lattanzi, G. The role of transposable elements activity in aging and their possible involvement in laminopathic diseases. Ageing Res. Rev. 57, 100995 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Kuo, C. C. et al. Detection of RNA–DNA binding sites in long noncoding RNAs. Nucleic Acids Res. 47, e32 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. O’Leary, V. B. et al. PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep. 11, 474–485 (2015).

    Article  PubMed  Google Scholar 

  49. Postepska-Igielska, A. et al. LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol. Cell 60, 626–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Mondal, T. et al. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures. Nat. Commun. 6, 7743 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Kunkler, C. N. et al. Stability of an RNA*DNA–DNA triple helix depends on base triplet composition and length of the RNA third strand. Nucleic Acids Res. 47, 7213–7222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu, H., Zhu, S., Zhou, B., Xue, H. & Han, J. D. Inferring causal relationships among different histone modifications and gene expression. Genome Res. 18, 1314–1324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Emam, A. et al. Stalled replication fork protection limits cGAS–STING and P-body-dependent innate immune signalling. Nat. Cell Biol. 24, 1154–1164 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Miura, H., Quadros, R. M., Gurumurthy, C. B. & Ohtsuka, M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat. Protoc. 13, 195–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Eng, J. K., McCormack Al Fau, -, Yates, J. R. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass. Spectrom. 5, 976–989 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

  57. Paoletti, A. C. et al. Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc. Natl Acad. Sci. USA 103, 18928–18933 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Verschueren, E. et al. Scoring large-scale affinity purification mass spectrometry datasets with MiST. Curr. Protoc. Bioinform. 49, 8.19.1–8.19.16 (2015).

    Article  Google Scholar 

  59. Giurgiu, M. et al. CORUM: the comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res. 47, D559–D563 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oughtred, R. et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30, 187–200 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Yu, G. et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cao, Y. et al. Widespread roles of enhancer-like transposable elements in cell identity and long-range genomic interactions. Genome Res. 29, 40–52 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Wang (Sun Yat-Sen University) for providing L1 retrotansposation vector and B. Zhu (Institute of Biophysics) for critical reading of the manuscript and invaluable suggestions, the technology platform of the National Center for Protein Sciences, Peking University for mass spectrometry and flow cytometry analysis, and the Center for Quantitative Biology, Peking University for microscopy imaging. This work was supported by grants from the National Natural Science Foundation of China (grant nos 92049302 and 32088101), China Ministry of Science and Technology (grant no. 2020YFA0804000) and Shanghai Municipal Science and Technology Major Project (grant no. 2017SHZDZX01) to J.-D.J.H.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and J.-D.J.H. designed experiments. J.-D.J.H., X.Z. and J.C. designed analyses. X.Z. and J.T. performed wet experiments. Q.J., J.L., S.Z., Y.C., X.X. and D.C. performed computational analyses, and X.Z., J.-D.J.H., Q.J., J.L. and S.Z. wrote the manuscript.

Corresponding author

Correspondence to Jing-Dong J. Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Edward Chuong, John Sedivy and Rory Johnson for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 LncRNA KCNQ1OT1 binds HP1 and suppresses H3K9me3 foci in mouse NIH3T3 cells.

a, Expression rank of XIST, KCNQ1OT1, AIRN, and HOTTIP among all lncRNAs derived from HEK293T RNA-seq data. b, RIP performed using antibodies against control immunoglobulin G (IgG) or H3K9me3 in mouse NIH3T3 cells. c, In vitro RNA pull down with biotinylated DNA probes complementary to KCNQ1OT1 (K probe) or control probes (lacZ probe) followed by western blotting. This experiment was repeated three times with similar results. d, Expression of KCNQ1OT1 in control (transfected with empty vector, EV) and K KD cells (left, HEK293T; right, NIH3T3). e, Left, increase of H3K9me3 foci in KCNQ1OT1 KD 3T3 cells shown by immunofluoresence against H3K9me3. Nuclei were counterstained with DAPI. Scale bar, 5 μm. Right, quantification of heterochromatin foci. n = 94 (EV) and 110 (KD) cells pooled across three independent experiments. The bound of a box shows 25% (lower quartile) and 75% (upper quartile) of all values in the group. The centre of the box shows the median value. Values outside middle 50% value (Interquartile Range, or IQR) but within 1.5xIQR are shown as whiskers, otherwise as black dots. All values are shown as grey spots. Data in a and d are shown as mean ± s.e.m. (n = 3 independent experiments), and as fold enrichment relative to input. ACTB, U6 snRNA, and NEAT1 are used as negative controls for RIP-qPCR. Statistical significance was determined by two-tailed Student’s t-test, *p < 0.05, ** p < 0.01, *** p < 0.001. Source numerical data and unprocessed blots are available in Source Data.

Source data

Extended Data Fig. 2 KCNQ1OT1 lncRNA binding regions overlap heterochromatin marks in HEK293T cells.

a, Length distribution of DNA sequences bound by KCNQ1OT1. b, Number of KCNQ1OT1 ChIRP–seq peaks ≥ 1 bp overlapped with at least one repeat or no repeats on each chromosome. c, Compared to 1000 times random sampling of the same number of genomic fragments of the exact same length distribution as KCNQ1OT1 ChIRP–seq peaks (panel 2a), the total 90.8% overlap of KCNQ1OT1 ChIRP–seq peak length to repeat elements is significantly larger than those generated by random sampling with binomial distribution test p < 2.2e-16, empirical p < 0.001. d, Validation of 3 randomly selected KCNQ1OT1 targeted L1 repeats by ChIRP–qPCR. e, ChIP-qPCR of H3K9me3 in HEK293T cells at the same 3 L1 repeats shown in d and at one negative control region. f, Flow-chart of sequential ChIRP–ChIP. g, Sequential ChIRP–ChIP-qPCR showing H3K9me3 at 3 randomly selected KCNQ1OT1 lncRNA associated L1 repeats regions and one negative control (NC) region. h, Genome-browser tracks of H3K9me3 ChIP–seq, MeDIP-seq, and ChIRP–seq alignments at two representative repeats regions, including L1 and Alu. i, Expression of KCNQ1OT1 in control (transfected with empty vector, EV) and KCNQ1OT1 activation (transfected with gRNA expression vector) cells. j, DNA methylation status on a representative KCNQ1OT1 binding L1 element (qPCR region: chr1:65,797,529-65,797,674) in EV, EV-ASO, and K activation-ASO cells detected by MeDIP-qPCR. Data in d, e, g, i, and j are mean ± s.e.m. (n = 3 independent experiments). Statistical significance was determined by two-tailed Student’s t-test, *p < 0.05, **p < 0.01, ***p < 0.001. Source numerical data are available in Source Data.

Source data

Extended Data Fig. 3 Binding proteins and repetitive elements expression changes in K non-rep KO and K rep KO versus WT HEK293T cells.

a, Diagram showing regions of KCNQ1OT1 deleted in K non-rep KO and K rep KO cells. b, Strand-specific RNA-seq tracks show the expression of KCNQ1 and KCNQ1OT1 in WT, K non-rep KO, K rep KO, EV, and K KD HEK293T cells. c, Correlation analysis of the ChOP-MS dataset shows good correlation between biological replicates. Spearman’s rank correlation coefficient (rho) and p-value between two replicate samples are shown. KCNQ1OT1 denotes KCNQ1OT1 probe, LacZ denotes LacZ probe. d, Expression of randomly selected AluY elements that are targeted by KCNQ1OT1 assessed by RT-qPCR. e, Expression of randomly selected L1 elements that are targeted by KCNQ1OT1 assessed by RT-qPCR. f, Expression of L1HS in two different K rep KO clonal cell lines detected by RT-qPCR. g, DNA methylation status on a representative KCNQ1OT1 binding L1 element in WT, K rep KO clone-1, and K rep KO clone-2 cells detected by MeDIP-qPCR. The qPCR primers amplify unique sequence within the repetitive element (chr1:65,797,529-65,797,674). h, Significance of DNMT1, DNMT3A and HP1α in WT, K non-rep KO and K rep KO cells (use NSAF for one-tailed paired Student’s t-test). Data in d, e, f, and g are mean ± s.e.m. (n = 3 independent experiments). Statistical significance was determined by two-tailed Student’s t-test, *p < 0.05, **p < 0.01, ***p < 0.001. Source numerical data are available in Source Data.

Source data

Extended Data Fig. 4 KCNQ1OT1 binding at L1 and Alu elements that contain triplex-forming sequences.

a, In vivo triplex pulldown by transfecting biotinylated normal L1 (containing poly(A)) or mutant L1 RNA (containing poly(G)) targeting the site indicated in Fig. 5d (left panel) into HEK293T cells. RNA-associated DNA was analysed by qPCR and normalized to input DNA. The qPCR primers amplify unique sequences within the repetitive elements (L1, chr11:93,426,919-93,427,079; Alu, chr7:105,405,644-105,405,823). b and c, Probability density of number of triplexes on KCNQ1OT1 with each L1 (b) and Alu (c) subfamilies in each 100 bp interval along the KCNQ1OT1 genes. d, Average input and H3K9me3 ChIP–seq signal at the triplexes predicted on L1 and Alu elements. e, Saturation analysis for ChIRP–seq data. Peak numbers detected at the indicated percentage of reads randomly sampled. Data in a are shown as mean ± s.e.m. (n = 3 independent experiments). Statistical significance was determined by two-tailed Student’s t-test, ** p < 0.01, *** p < 0.001. Source numerical data are available in Source Data.

Source data

Supplementary information

Reporting Summary

Peer Review File

Supplementary Table 1

Sequences of primers and probes, Alu subfamilies and proteins bound by KCNQ1OT1.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 1

Unprocessed western blots.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Jiang, Q., Li, J. et al. KCNQ1OT1 promotes genome-wide transposon repression by guiding RNA–DNA triplexes and HP1 binding. Nat Cell Biol 24, 1617–1629 (2022). https://doi.org/10.1038/s41556-022-01008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-022-01008-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing