Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear actin filaments in DNA repair dynamics

Abstract

Recent development of innovative tools for live imaging of actin filaments (F-actin) enabled the detection of surprising nuclear structures responding to various stimuli, challenging previous models that actin is substantially monomeric in the nucleus. We review these discoveries, focusing on double-strand break (DSB) repair responses. These studies revealed a remarkable network of nuclear filaments and regulatory mechanisms coordinating chromatin dynamics with repair progression and led to a paradigm shift by uncovering the directed movement of repair sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nuclear actin polymerizes in response to several stimuli.
Fig. 2: Model for the role of F-actin in DSB repair of heterochromatin and euchromatin.
Fig. 3: Different actin nucleators and motor proteins contribute to DSB dynamics and repair.

Similar content being viewed by others

References

  1. Pollard, T. D. Actin and actin-binding proteins. Cold Spring Harb. Perspect. Biol. 8, a018226 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rottner, K., Faix, J., Bogdan, S., Linder, S. & Kerkhoff, E. Actin assembly mechanisms at a glance. J. Cell Sci. 130, 3427–3435 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Titus, M. A. Myosin-driven intracellular transport. Cold Spring Harb. Perspect. Biol. 10, a021972 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Pollard, T. D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Verboon, J. M., Sugumar, B. & Parkhurst, S. M. Wiskott-Aldrich syndrome proteins in the nucleus: aWASH with possibilities. Nucleus 6, 349–359 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Belin, B. J., Cimini, B. A., Blackburn, E. H. & Mullins, R. D. Visualization of actin filaments and monomers in somatic cell nuclei. Mol. Biol. Cell 24, 982–994 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Melak, M., Plessner, M. & Grosse, R. Actin visualization at a glance. J. Cell Sci. 130, 525–530 (2017).

    Article  PubMed  Google Scholar 

  8. Baarlink, C., Wang, H. & Grosse, R. Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340, 864–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Belin, B. J., Lee, T. & Mullins, R. D. DNA damage induces nuclear actin filament assembly by Formin -2 and Spire-½ that promotes efficient DNA repair. eLife 4, e07735 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Plessner, M., Melak, M., Chinchilla, P., Baarlink, C. & Grosse, R. Nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 290, 11209–11216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caridi, C. P. et al. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559, 54–60 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baarlink, C. et al. A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nat. Cell Biol. 19, 1389–1399 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Spracklen, A. J., Fagan, T. N., Lovander, K. E. & Tootle, T. L. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis. Dev. Biol. 393, 209–226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Plessner, M. & Grosse, R. Dynamizing nuclear actin filaments. Curr. Opin. Cell Biol. 56, 1–6 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Clark, T. G. & Rosenbaum, J. L. An actin filament matrix in hand-isolated nuclei of X. laevis oocytes. Cell 18, 1101–1108 (1979).

    Article  CAS  PubMed  Google Scholar 

  16. Bohnsack, M. T., Stüven, T., Kuhn, C., Cordes, V. C. & Görlich, D. A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes. Nat. Cell Biol. 8, 257–263 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Dopie, J., Skarp, K. P., Rajakylä, E. K., Tanhuanpää, K. & Vartiainen, M. K. Active maintenance of nuclear actin by importin 9 supports transcription. Proc. Natl Acad. Sci. USA 109, E544–E552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feric, M. & Brangwynne, C. P. A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat. Cell Biol. 15, 1253–1259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oda, H., Shirai, N., Ura, N., Ohsumi, K. & Iwabuchi, M. Chromatin tethering to the nuclear envelope by nuclear actin filaments: a novel role of the actin cytoskeleton in the Xenopus blastula. Genes Cells 22, 376–391 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Miyamoto, K., Pasque, V., Jullien, J. & Gurdon, J. B. Nuclear actin polymerization is required for transcriptional reprogramming of Oct4 by oocytes. Genes Dev. 25, 946–958 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyamoto, K. et al. Nuclear Wave1 is required for reprogramming transcription in oocytes and for normal development. Science 341, 1002–1005 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Miralles, F., Posern, G., Zaromytidou, A. I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Vartiainen, M. K., Guettler, S., Larijani, B. & Treisman, R. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316, 1749–1752 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Kircher, P. et al. Filamin A interacts with the coactivator MKL1 to promote the activity of the transcription factor SRF and cell migration. Sci. Signal. 8, ra112 (2015).

    Article  PubMed  CAS  Google Scholar 

  25. Tsopoulidis, N. et al. T cell receptor-triggered nuclear actin network formation drives CD4+ T cell effector functions. Sci. Immunol. 4, eaav1987 (2019).

    Article  PubMed  Google Scholar 

  26. Chuang, C. H. et al. Long-range directional movement of an interphase chromosome site. Curr. Biol. 16, 825–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Dundr, M. et al. Actin-dependent intranuclear repositioning of an active gene locus in vivo. J. Cell Biol. 179, 1095–1103 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Philimonenko, V. V. et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 6, 1165–1172 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Yoo, Y., Wu, X. & Guan, J. L. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J. Biol. Chem. 282, 7616–7623 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Serebryannyy, L. A. et al. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J. Cell Sci. 129, 3412–3425 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Söderberg, E., Hessle, V., von Euler, A. & Visa, N. Profilin is associated with transcriptionally active genes. Nucleus 3, 290–299 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sokolova, M. et al. Nuclear actin is required for transcription during Drosophila oogenesis. iScience 9, 63–70 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tondeleir, D. et al. Cells lacking β-actin are genetically reprogrammed and maintain conditional migratory capacity. Mol. Cell. Proteomics 11, 255–271 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Xie, X. et al. β-actin-dependent global chromatin organization and gene expression programs control cellular identity. FASEB J. 32, 1296–1314 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Xie, X., Jankauskas, R., Mazari, A. M. A., Drou, N. & Percipalle, P. β-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming. PLoS Genet. 14, e1007846 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Klages-Mundt, N. L., Kumar, A., Zhang, Y., Kapoor, P. & Shen, X. The nature of actin-family proteins in chromatin-modifying complexes. Front. Genet. 9, 398 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fenn, S. et al. Structural biochemistry of nuclear actin-related proteins 4 and 8 reveals their interaction with actin. EMBO J. 30, 2153–2166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao, T. et al. Crystal structure of a nuclear actin ternary complex. Proc. Natl Acad. Sci. USA 113, 8985–8990 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, C., Zhu, R. & Mao, Y. Nuclear actin polymerized by mDia2 confines centromere movement during CENP-A loading. iScience 9, 314–327 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parisis, N. et al. Initiation of DNA replication requires actin dynamics and formin activity. EMBO J. 36, 3212–3231 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Raghuraman, M. K., Brewer, B. J. & Fangman, W. L. Cell cycle-dependent establishment of a late replication program. Science 276, 806–809 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Jackson, D. A. & Pombo, A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 140, 1285–1295 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dimitrova, D. S. & Gilbert, D. M. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol. Cell 4, 983–993 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Heun, P., Laroche, T., Raghuraman, M. K. & Gasser, S. M. The positioning and dynamics of origins of replication in the budding yeast nucleus. J. Cell Biol. 152, 385–400 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shermoen, A. W., McCleland, M. L. & O’Farrell, P. H. Developmental control of late replication and S phase length. Curr. Biol. 20, 2067–2077 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dileep, V. et al. Topologically associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication-timing program. Genome Res. 25, 1104–1113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Knott, S. R. et al. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell 148, 99–111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fang, D. et al. Dbf4 recruitment by forkhead transcription factors defines an upstream rate-limiting step in determining origin firing timing. Genes Dev. 31, 2405–2415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, H. et al. Dynamic relocalization of replication origins by Fkh1 requires execution of DDK function and Cdc45 loading at origins. eLife 8, e45512 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Peace, J. M., Ter-Zakarian, A. & Aparicio, O. M. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One 9, e98501 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hafner, L. et al. Rif1 binding and control of chromosome-internal DNA replication origins is limited by telomere sequestration. Cell Rep. 23, 983–992 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Welch, M. D. & Way, M. Arp2/3-mediated actin-based motility: a tail of pathogen abuse. Cell Host Microbe 14, 242–255 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wilkie, A. R., Lawler, J. L. & Coen, D. M. A role for nuclear F-actin induction in human cytomegalovirus nuclear egress. MBio 7, e01254–16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ohkawa, T. & Welch, M. D. Baculovirus actin-based motility drives nuclear envelope disruption and nuclear egress. Curr. Biol. 28, 2153–2159.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kowalczykowski, S. C. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 7, a016410 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zuchero, J. B., Coutts, A. S., Quinlan, M. E., Thangue, N. B. & Mullins, R. D. p53-cofactor JMY is a multifunctional actin nucleation factor. Nat. Cell Biol. 11, 451–459 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yuan, Y. & Shen, Z. Interaction with BRCA2 suggests a role for filamin-1 (hsFLNa) in DNA damage response. J. Biol. Chem. 276, 48318–48324 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Yue, J. et al. The cytoskeleton protein filamin-A is required for an efficient recombinational DNA double strand break repair. Cancer Res. 69, 7978–7985 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Velkova, A., Carvalho, M. A., Johnson, J. O., Tavtigian, S. V. & Monteiro, A. N. Identification of Filamin A as a BRCA1-interacting protein required for efficient DNA repair. Cell Cycle 9, 1421–1433 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Hansen, R. K. et al. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts. Nat. Cell Biol. 18, 1357–1366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Isobe, S. Y., Nagao, K., Nozaki, N., Kimura, H. & Obuse, C. Inhibition of RIF1 by SCAI allows BRCA1-mediated repair. Cell Reports 20, 297–307 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Brandt, D. T. et al. SCAI acts as a suppressor of cancer cell invasion through the transcriptional control of β1-integrin. Nat. Cell Biol. 11, 557–568 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Sridharan, D., Brown, M., Lambert, W. C., McMahon, L. W. & Lambert, M. W. Nonerythroid alphaII spectrin is required for recruitment of FANCA and XPF to nuclear foci induced by DNA interstrand cross-links. J. Cell Sci. 116, 823–835 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Andrin, C. et al. A requirement for polymerized actin in DNA double-strand break repair. Nucleus 3, 384–395 (2012).

    Article  PubMed  Google Scholar 

  66. Kulashreshtha, M., Mehta, I. S., Kumar, P. & Rao, B. J. Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by ϒ-H2AX signaling. Nucleic Acids Res. 44, 8272–8291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Spichal, M. et al. Evidence for a dual role of actin in regulating chromosome organization and dynamics in yeast. J. Cell Sci. 129, 681–692 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Evdokimova, V. N., Gandhi, M., Nikitski, A. V., Bakkenist, C. J. & Nikiforov, Y. E. Nuclear myosin/actin-motored contact between homologous chromosomes is initiated by ATM kinase and homology-directed repair proteins at double-strand DNA breaks to suppress chromosome rearrangements. Oncotarget 9, 13612–13622 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Marnef, A. et al. A cohesin/HUSH- and LINC-dependent pathway controls ribosomal DNA double-strand break repair. Genes Dev. 33, 1–16 (2019).

    Article  CAS  Google Scholar 

  70. Kapoor, P. & Shen, X. Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol. 24, 238–246 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Neumann, F. R. et al. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev. 26, 369–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Horigome, C. et al. SWR1 and INO80 chromatin remodelers contribute to DNA double-strand break perinuclear anchorage site choice. Mol. Cell 55, 626–639 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Park, E. J., Hur, S. K. & Kwon, J. Human INO80 chromatin-remodelling complex contributes to DNA double-strand break repair via the expression of Rad54B and XRCC3 genes. Biochem. J. 431, 179–187 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, Y. H. et al. DNA damage causes rapid accumulation of phosphoinositides for ATR signaling. Nat. Commun. 8, 2118 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Sun, M. H. et al. DNA double-strand breaks induce the nuclear actin filaments formation in cumulus-enclosed oocytes but not in denuded oocytes. PLoS One 12, e0170308 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Hoskins, R. A. et al. Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 316, 1625–1628 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ho, J. W. et al. Comparative analysis of metazoan chromatin organization. Nature 512, 449–452 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hoskins, R. A. et al. The Release 6 reference sequence of the Drosophila melanogaster genome. Genome Res. 25, 445–458 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lachner, M., O’Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Riddle, N. C. et al. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res. 21, 147–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Goodarzi, A. A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31, 167–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Chiolo, I. et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144, 732–744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chiolo, I., Tang, J., Georgescu, W. & Costes, S. V. Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin. Mutat. Res. 750, 56–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Ryu, T. et al. Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat. Cell Biol. 17, 1401–1411 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tsouroula, K. et al. Temporal and spatial uncoupling of DNA double strand break repair pathways within mammalian heterochromatin. Mol. Cell 63, 293–305 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Li, Q. et al. The three-dimensional genome organization of Drosophila melanogaster through data integration. Genome Biol. 18, 145 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Caridi, P. C., Delabaere, L., Zapotoczny, G. & Chiolo, I. And yet, it moves: nuclear and chromatin dynamics of a heterochromatic double-strand break. Phil. Trans. R. Soc. Lond. B 372, 20160291 (2017).

    Article  CAS  Google Scholar 

  91. Peng, J. C. & Karpen, G. H. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 9, 25–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Peng, J. C. & Karpen, G. H. Epigenetic regulation of heterochromatic DNA stability. Curr. Opin. Genet. Dev. 18, 204–211 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Peng, J. C. & Karpen, G. H. Heterochromatic genome stability requires regulators of histone H3 K9 methylation. PLoS Genet. 5, e1000435 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ryu, T., Bonner, M. R. & Chiolo, I. Cervantes and Quijote protect heterochromatin from aberrant recombination and lead the way to the nuclear periphery. Nucleus 7, 485–497 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dialynas, G., Delabaere, L. & Chiolo, I. Arp2/3 and Unc45 maintain heterochromatin stability in Drosophila polytene chromosomes. Exp. Biol. Med. https://doi.org/10.1177/1535370219862282 (2019).

  96. Beucher, A. et al. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J. 28, 3413–3427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Janssen, A. et al. A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin. Genes Dev. 30, 1645–1657 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Amaral, N., Ryu, T., Li, X. & Chiolo, I. Nuclear dynamics of heterochromatin repair. Trends Genet. 33, 86–100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rawal, C. P.C. C. & Chiolo, I. Actin’ between phase separated domains for heterochromatin repair. DNA Repair https://doi.org/10.1016/j.dnarep.2019.102646 (2019).

  100. Guenatri, M., Bailly, D., Maison, C. & Almouzni, G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol. 166, 493–505 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jakob, B. et al. DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res. 39, 6489–6499 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ayoub, N., Jeyasekharan, A. D., Bernal, J. A. & Venkitaraman, A. R. HP1-β mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453, 682–686 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Dronamraju, R. & Mason, J. M. MU2 and HP1a regulate the recognition of double strand breaks in Drosophila melanogaster. PLoS One 6, e25439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Colmenares, S. U. et al. Drosophila histone demethylase KDM4A has enzymatic and non-enzymatic roles in controlling heterochromatin integrity. Dev. Cell 42, 156–169.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Goodarzi, A. A., Kurka, T. & Jeggo, P. A. KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nat. Struct. Mol. Biol. 18, 831–839 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Delabaere, L. & Chiolo, I. ReiNF4rcing repair pathway choice during cell cycle. Cell Cycle 15, 1182–1183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Senaratne, T. N., Joyce, E. F., Nguyen, S. C. & Wu, C. T. Investigating the interplay between sister chromatid cohesion and homolog pairing in Drosophila nuclei. PLoS Genet. 12, e1006169 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. See, C., Arya, D., Lin, E. & Chiolo, I. Live cell imaging of nuclear actin filaments and heterochromatic repair foci in Drosophila and mouse cells. Preprint at PeerJ Preprints https://doi.org/10.7287/peerj.preprints.27900v1 (2019).

  109. Caridi, C. P. et al. Quantitative methods to investigate the 4D dynamics of heterochromatic repair sites in Drosophila cells. Methods Enzymol. 601, 359–389 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schrank, B. R. et al. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature 559, 61–66 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lisby, M., Mortensen, U. H. & Rothstein, R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat. Cell Biol. 5, 572–577 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Aten, J. A. et al. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303, 92–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823–834 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Neumaier, T. et al. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc. Natl Acad. Sci. USA 109, 443–448 (2012).

    Article  PubMed  Google Scholar 

  115. Aymard, F. et al. Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nat. Struct. Mol. Biol. 24, 353–361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Costes, S. V., Chiolo, I., Pluth, J. M., Barcellos-Hoff, M. H. & Jakob, B. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutat. Res. 704, 78–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Clouaire, T. et al. Comprehensive mapping of histone modifications at DNA double-strand breaks deciphers repair pathway chromatin signatures. Mol. Cell 72, 250–262.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lottersberger, F., Karssemeijer, R. A., Dimitrova, N. & de Lange, T. 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell 163, 880–893 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lawrimore, J. et al. Microtubule dynamics drive enhanced chromatin motion and mobilize telomeres in response to DNA damage. Mol. Biol. Cell 28, 1701–1711 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Oshidari, R. et al. Nuclear microtubule filaments mediate non-linear directional motion of chromatin and promote DNA repair. Nat. Commun. 9, 2567 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Swartz, R. K., Rodriguez, E. C. & King, M. C. A role for nuclear envelope-bridging complexes in homology-directed repair. Mol. Biol. Cell 25, 2461–2471 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Chung, D. K. et al. Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat. Commun. 6, 7742 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322, 597–602 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Su, X. A., Dion, V., Gasser, S. M. & Freudenreich, C. H. Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability. Genes Dev. 29, 1006–1017 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Quivy, J.-P., Gérard, A., Cook, A. J., Roche, D. & Almouzni, G. The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat. Struct. Mol. Biol. 15, 972–979 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Johnson, M. A., Sharma, M., Mok, M. T. & Henderson, B. R. Stimulation of in vivo nuclear transport dynamics of actin and its co-factors IQGAP1 and Rac1 in response to DNA replication stress. Biochim. Biophys. Acta 1833, 2334–2347 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Lamm, N., Masamsetti, V.P., Read, M.N., Biro, M. & Cesare, A.J. ATR and mTOR regulate F-actin to alter nuclear architecture and repair replication stress. bioRxiv preprint at https://doi.org/10.1101/451708 (2018).

  128. Bermejo, R. et al. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146, 233–246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kumar, A. et al. ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress. Cell 158, 633–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Torres-Rosell, J. et al. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 9, 923–931 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Harding, S. M., Boiarsky, J. A. & Greenberg, R. A. ATM dependent silencing links nucleolar chromatin reorganization to DNA damage recognition. Cell Rep. 13, 251–259 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. van Sluis, M. & McStay, B. A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage. Genes Dev. 29, 1151–1163 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Horigome, C., Unozawa, E., Ooki, T. & Kobayashi, T. Ribosomal RNA gene repeats associate with the nuclear pore complex for maintenance after DNA damage. PLoS Genet. 15, e1008103 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Therizols, P. et al. Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J. Cell Biol. 172, 189–199 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Khadaroo, B. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nat. Cell Biol. 11, 980–987 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Cho, N. W., Dilley, R. L., Lampson, M. A. & Greenberg, R. A. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159, 108–121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Churikov, D. et al. SUMO-dependent relocalization of eroded telomeres to nuclear pore complexes controls telomere recombination. Cell Rep. 15, 1242–1253 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Kalocsay, M., Hiller, N. J. & Jentsch, S. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol. Cell 33, 335–343 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Oza, P., Jaspersen, S. L., Miele, A., Dekker, J. & Peterson, C. L. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 23, 912–927 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Roukos, V. et al. Spatial dynamics of chromosome translocations in living cells. Science 341, 660–664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Miné-Hattab, J., Recamier, V., Izeddin, I., Rothstein, R. & Darzacq, X. in Molecular Biology of the Cell vol. 28 (eds Lidke, D., Lippincott-Schwartz, J. and Mogilner, A.) 3323–3332 (American Society for Cell Biology, 2017).

  142. Dion, V., Kalck, V., Horigome, C., Towbin, B. D. & Gasser, S. M. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat. Cell Biol. 14, 502–509 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Miné-Hattab, J. & Rothstein, R. Increased chromosome mobility facilitates homology search during recombination. Nat. Cell Biol. 14, 510–517 (2012).

    Article  PubMed  CAS  Google Scholar 

  144. Amitai, A., Seeber, A., Gasser, S. M. & Holcman, D. Visualization of chromatin decompaction and break site extrusion as predicted by statistical polymer modeling of single-locus trajectories. Cell Rep. 18, 1200–1214 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Spichal, M. & Fabre, E. The emerging role of the cytoskeleton in chromosome dynamics. Front. Genet. 8, 60 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Dion, V. & Gasser, S. M. Chromatin movement in the maintenance of genome stability. Cell 152, 1355–1364 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Hatakeyama, H., Nakahata, Y., Yarimizu, H. & Kanzaki, M. Live-cell single-molecule labeling and analysis of myosin motors with quantum dots. Mol. Biol. Cell 28, 173–181 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li, H., Guo, F., Rubinstein, B. & Li, R. Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nat. Cell Biol. 10, 1301–1308 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Azzaz, A. M. et al. Human heterochromatin protein 1α promotes nucleosome associations that drive chromatin condensation. J. Biol. Chem. 289, 6850–6861 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell Biol. 9, M57–M60 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yang, X. & Lin, Y. Functions of nuclear actin-binding proteins in human cancer. Oncol. Lett. 15, 2743–2748 (2018).

    PubMed  Google Scholar 

  155. Buchbinder, D., Nugent, D. J. & Fillipovich, A. H. Wiskott-Aldrich syndrome: diagnosis, current management, and emerging treatments. Appl. Clin. Genet. 7, 55–66 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  157. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  PubMed  Google Scholar 

  158. Munsie, L. et al. Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease. Hum. Mol. Genet. 20, 1937–1951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Maiuri, T. et al. Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex. Hum. Mol. Genet. 26, 395–406 (2017).

    CAS  PubMed  Google Scholar 

  160. Prochniewicz, E., Thompson, L. V. & Thomas, D. D. Age-related decline in actomyosin structure and function. Exp. Gerontol. 42, 931–938 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. White, R. R. et al. Double-strand break repair by interchromosomal recombination: an in vivo repair mechanism utilized by multiple somatic tissues in mammals. PLoS One 8, e84379 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Sukup-Jackson, M. R. et al. Rosa26-GFP direct repeat (RaDR-GFP) mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo. PLoS Genet. 10, e1004299 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Delabaere, L. et al. Aging impairs double-strand break repair by homologous recombination in Drosophila germ cells. Aging Cell 16, 320–328 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Simon, D. N., Zastrow, M. S. & Wilson, K. L. Direct actin binding to A- and B-type lamin tails and actin filament bundling by the lamin A tail. Nucleus 1, 264–272 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Scaffidi, P. & Misteli, T. Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat. Med. 11, 440–445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zada, D., Bronshtein, I., Lerer-Goldshtein, T., Garini, Y. & Appelbaum, L. Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nat. Commun. 10, 895 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work could not be cited owing to space limitations. We thank S. Keagy for useful comments on the manuscript. This work is supported by NIH R01GM117376 and NSF Career 1751197 to I.C. and the DFG GR 2111/7-1 to R.G.

Author information

Authors and Affiliations

Authors

Contributions

C.P.C., R.G., and I.C. contributed to manuscript and figure preparation. M.P. contributed to Fig. 1.

Corresponding author

Correspondence to Irene Chiolo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caridi, C.P., Plessner, M., Grosse, R. et al. Nuclear actin filaments in DNA repair dynamics. Nat Cell Biol 21, 1068–1077 (2019). https://doi.org/10.1038/s41556-019-0379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-019-0379-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing