Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mesenchymal stromal cells with chimaeric antigen receptors for enhanced immunosuppression

Abstract

Allogeneic mesenchymal stromal cells (MSCs) are a safe treatment option for many disorders of the immune system. However, clinical trials using MSCs have shown inconsistent therapeutic efficacy, mostly owing to MSCs providing insufficient immunosuppression in target tissues. Here we show that antigen-specific immunosuppression can be enhanced by genetically modifying MSCs with chimaeric antigen receptors (CARs), as we show for E-cadherin-targeted CAR-MSCs for the treatment of graft-versus-host disease in mice. CAR-MSCs led to superior T-cell suppression and localization to E-cadherin+ colonic cells, ameliorating the animals’ symptoms and survival rates. On antigen-specific stimulation, CAR-MSCs upregulated the expression of immunosuppressive genes and receptors for T-cell inhibition as well as the production of immunosuppressive cytokines while maintaining their stem cell phenotype and safety profile in the animal models. CAR-MSCs may represent a widely applicable therapeutic technology for enhancing immunosuppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MSCs are transduced to express CAR and maintain stem-like features following transduction and stimulation.
Fig. 2: EcCAR-MSCs demonstrate superior antigen-specific suppression of primary T cells and signalling in vitro.
Fig. 3: EcCAR-MSCs induce superior immunosuppression in tumour and GvHD xenograft models.
Fig. 4: EcCAR-MSCs display antigen-specific activation and trafficking to Ecad+ colonic target tissue in acute GvHD xenograft models.
Fig. 5: Activation of antigen-specific immunosuppressive signalling pathways identified in EcCAR-MSCs.
Fig. 6: Increased cytokine secretion, surface marker expression and subsequent T-cell modulation identified following EcCAR-MSC stimulation.
Fig. 7: CD28ζ signalling domain within EcCAR-MSCs is required for optimal immunosuppressive efficacy.
Fig. 8: EcCAR-MSC safety and clearance profiles across tissues.

Similar content being viewed by others

Data availability

The raw sequencing data are available at Gene Expression Omnibus (GEO) via the accession code GSE256355. The raw and analysed datasets generated during the study are available for research purposes from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Shi, Y. et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 20, 510–518 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Ma, S. et al. Immunobiology of mesenchymal stem cells. Cell Death Differ. 21, 216–225 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Galipeau, J. & Sensebe, L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22, 824–833 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726–736 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Krampera, M. & Le Blanc, K. Mesenchymal stromal cells: putative microenvironmental modulators become cell therapy. Cell Stem Cell 28, 1708–1725 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Guess, A. J. et al. Safety profile of good manufacturing practice manufactured interferon gamma-primed mesenchymal stem/stromal cells for clinical trials. Stem Cells Transl. Med. 6, 1868–1879 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Melief, S. M., Zwaginga, J. J., Fibbe, W. E. & Roelofs, H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl. Med. 2, 455–463 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Levy, O. et al. Shattering barriers toward clinically meaningful MSC therapies. Sci. Adv. 6, eaba6884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. English, K., Barry, F. P., Field-Corbett, C. P. & Mahon, B. P. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol. Lett. 110, 91–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Noronha, N. C. et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res. Ther. 10, 131 (2019).

    Article  PubMed  Google Scholar 

  12. Yue, C. et al. c-Jun overexpression accelerates wound healing in diabetic rats by human umbilical cord-derived mesenchymal stem cells. Stem Cells Int. 2020, 7430968 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T-cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Kenderian, S. S., Ruella, M., Gill, S. & Kalos, M. Chimeric antigen receptor T-cell therapy to target hematologic malignancies. Cancer Res. 74, 6383–6389 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, P. et al. Efficient lentiviral transduction of human mesenchymal stem cells that preserves proliferation and differentiation capabilities. Stem Cells Transl. Med. 1, 886–897 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sakemura, R. et al. Dynamic imaging of chimeric antigen receptor T cells with [18F] tetrafluoroborate positron emission tomography/computed tomography. J. Vis. Exp. https://doi.org/10.3791/62334 (2022).

  17. Sterner, R. M. et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR T-cell function in xenografts. Blood 133, 697–709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lamb, C. A., O’Byrne, S., Keir, M. E. & Butcher, E. C. Gut-selective integrin-targeted therapies for inflammatory bowel disease. J. Crohns Colitis 12, S653–S668 (2018).

    Article  PubMed  Google Scholar 

  19. Teshima, T., Reddy, P. & Zeiser, R. Acute graft-versus-host disease: novel biological insights. Biol. Blood Marrow Transpl. 22, 11–16 (2016).

    Article  CAS  Google Scholar 

  20. Ponten, F., Jirstrom, K. & Uhlen, M. The Human Protein Atlas—a tool for pathology. J. Pathol. 216, 387–393 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Park, S. G. et al. The kinase PDK1 integrates T cell antigen receptor and CD28 coreceptor signaling to induce NF-kappaB and activate T cells. Nat. Immunol. 10, 158–166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thaker, Y. R., Schneider, H. & Rudd, C. E. TCR and CD28 activate the transcription factor NF-kappaB in T cells via distinct adaptor signaling complexes. Immunol. Lett. 163, 113–119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo, W. et al. NF-KappaB pathway is involved in bone marrow stromal cell-produced pain relief. Front. Integr. Neurosci. 12, 49 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaltschmidt, C., Greiner, J. F. W. & Kaltschmidt, B. The transcription factor NF-kappaB in stem cells and development. Cells 10, 2042 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan, J. et al. Mesenchymal stem cells alleviate experimental autoimmune cholangitis through immunosuppression and cytoprotective function mediated by galectin-9. Stem Cell Res. Ther. 9, 237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu, E. et al. MiR-30a attenuates immunosuppressive functions of IL-1beta-elicited mesenchymal stem cells via targeting TAB3. FEBS Lett. 589, 3899–3907 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Golovina, T. N. et al. CD28 costimulation is essential for human T regulatory expansion and function. J. Immunol. 181, 2855–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Boroughs, A. C. et al. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function. JCI Insight 5, e126194 (2019).

    Article  PubMed  Google Scholar 

  30. Boardman, D. A. et al. Expression of a chimeric antigen receptor specific for donor HLA Class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am. J. Transpl. 17, 931–943 (2017).

    Article  CAS  Google Scholar 

  31. Molinero, L. L., Miller, M. L., Evaristo, C. & Alegre, M. L. High TCR stimuli prevent induced regulatory T cell differentiation in a NF-kappaB-dependent manner. J. Immunol. 186, 4609–4617 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Chang, Z. L., Hou, A. J. & Chen, Y. Y. Engineering primary T cells with chimeric antigen receptors for rewired responses to soluble ligands. Nat. Protoc. 15, 1507–1524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chang, Z. L. et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Chem. Biol. 14, 317–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, Y. et al. Mechanism of E-cadherin dimerization probed by NMR relaxation dispersion. Proc. Natl Acad. Sci. USA 110, 16462–16467 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maker, A. et al. Regulation of multiple dimeric states of E-cadherin by adhesion activating antibodies revealed through Cryo-EM and X-ray crystallography. Proc. Natl Acad. Sci. Nexus 1, pgac163 (2022).

    Google Scholar 

  36. Gaud, G., Lesourne, R. & Love, P. E. Regulatory mechanisms in T cell receptor signalling. Nat. Rev. Immunol. 18, 485–497 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Lindner, S. E., Johnson, S. M., Brown, C. E. & Wang, L. D. Chimeric antigen receptor signaling: Functional consequences and design implications. Sci. Adv. 6, eaaz3223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, Y. et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci. Immunol. 5, 43 (2020).

    Article  Google Scholar 

  39. Salter, A. I. et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci. Signal. 11, 544 (2018).

    Article  Google Scholar 

  40. Cox, M. J. et al. Leukemic extracellular vesicles induce chimeric antigen receptor T-cell dysfunction in chronic lymphocytic leukemia. Mol. Ther. 29, 1529–1540 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cox, M. J. et al. GM-CSF disruption in CART cells modulates T-cell activation and enhances CART cell anti-tumor activity. Leukemia 36, 1635–1645 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sakemura, R. et al. Development of a clinically relevant reporter for chimeric antigen receptor T-cell expansion, trafficking, and toxicity. Cancer Immunol. Res. 9, 1035–1046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sakemura, R. et al. Targeting cancer-associated fibroblasts in the bone marrow prevents resistance to CAR T-cell therapy in multiple Myeloma. Blood 139, 3708–3721 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Ehx, G. et al. Xenogeneic graft-versus-host disease in humanized NSG and NSG-HLA-A2/HHD mice. Front. Immunol. 9, 1943 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cooke, K. R. et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood 88, 3230–3239 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Naserian, S. et al. Simple, reproducible, and efficient clinical grading system for murine models of acute graft-versus-host disease. Front. Immunol. 9, 10 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lai, H. Y., Chou, T. Y., Tzeng, C. H. & Lee, O. K. Cytokine profiles in various graft-versus-host disease target organs following hematopoietic stem cell transplantation. Cell Transplant. 21, 2033–2045 (2012).

    Article  PubMed  Google Scholar 

  48. Schroeder, M. A. & DiPersio, J. F. Mouse models of graft-versus-host disease: advances and limitations. Dis. Model Mech. 4, 318–333 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Papanikolaou, E. et al. Cell cycle status of CD34+ hemopoietic stem cells determines lentiviral integration in actively transcribed and development-related genes. Mol. Ther. 23, 683–696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, S. et al. G2 cell cycle arrest and cyclophilin A in lentiviral gene transfer. Mol. Ther. 14, 546–554 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Ping, Z. et al. Activation of NF-kappaB driven inflammatory programs in mesenchymal elements attenuates hematopoiesis in low-risk myelodysplastic syndromes. Leukemia 33, 536–541 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Delarosa, O., Dalemans, W. & Lombardo, E. Toll-like receptors as modulators of mesenchymal stem cells. Front. Immunol. 3, 182 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dorronsoro, A. et al. Intracellular role of IL-6 in mesenchymal stromal cell immunosuppression and proliferation. Sci. Rep. 10, 21853 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schmitz, M. L. & Krappmann, D. Controlling NF-kappaB activation in T cells by costimulatory receptors. Cell Death Differ. 13, 834–842 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, D. S. et al. Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-gamma. EBioMedicine 28, 261–273 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Naserian, S., Shamdani, S., Arouche, N. & Uzan, G. Regulatory T-cell induction by mesenchymal stem cells depends on the expression of TNFR2 by T cells. Stem Cell Res. Ther. 11, 534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kyurkchiev, D. et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J. Stem Cells 6, 552–570 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dorronsoro, A. et al. Human mesenchymal stromal cells modulate T-cell responses through TNF-alpha-mediated activation of NF-kappaB. Eur. J. Immunol. 44, 480–488 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, S. et al. Immunosuppressive property of MSCs mediated by cell surface receptors. Front. Immunol. 11, 1076 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao, F. et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 7, e2062 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao, Y. et al. Galectin-9 mediates the therapeutic effect of mesenchymal stem cells on experimental endotoxemia. Front. Cell Dev. Biol. 10, 700702 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Gaber, T. et al. CTLA-4 mediates inhibitory function of mesenchymal stem/stromal cells. Int. J. Mol. Sci. 19, 2312 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Oyewole-Said, D. et al. Beyond T cells: functional characterization of CTLA-4 expression in immune and non-immune cell types. Front. Immunol. 11, 608024 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hacein-Bey-Abina, S. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256 (2003).

    Article  PubMed  Google Scholar 

  66. Howe, S. J. et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Invest. 118, 3143–3150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Scholler, J. et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med. 4, 132ra153 (2012).

    Article  Google Scholar 

  68. Sala, E. et al. Mesenchymal stem cells reduce colitis in mice via release of TSG6, independently of their localization to the intestine. Gastroenterology 149, 163–176 e120 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, M. et al. Intraperitoneal injection (IP), intravenous injection (IV) or anal injection (AI)? Best way for mesenchymal stem cells transplantation for colitis. Sci. Rep. 6, 30696 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yousefi, F., Ebtekar, M., Soleimani, M., Soudi, S. & Hashemi, S. M. Comparison of in vivo immunomodulatory effects of intravenous and intraperitoneal administration of adipose-tissue mesenchymal stem cells in experimental autoimmune encephalomyelitis (EAE). Int. Immunopharmacol. 17, 608–616 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Westenfelder, C. & Togel, F. E. Protective actions of administered mesenchymal stem cells in acute kidney injury: relevance to clinical trials. Kidney Int. Suppl. 1, 103–106 (2011).

    Article  Google Scholar 

  72. Bernardo, M. E. & Fibbe, W. E. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13, 392–402 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Haidaris, C. G. et al. Recombinant human antibody single chain variable fragments reactive with Candida albicans surface antigens. J. Immunol. Methods 257, 185–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17.1, 10–12 (2011).

    Article  Google Scholar 

  75. Kolde, R. pheatmap. Pretty Heatmaps. R version 1.0.12 https://cran.r-project.org/web/packages/pheatmap/index.html (2019).

  76. Wickham, H. et al. ggplot2. Create elegant data visualisations using the grammar of graphics. R version 3.5.0 https://cran.r-project.org/web/packages/ggplot2/index.html (2024).

  77. Xie, Z. et al. Gene set knowledge discovery with enrichr. Curr. Protoc. 1, e90 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Enrichr. (Ma’ayan Laboratory, 2022). https://maayanlab.cloud/Enrichr/

  79. Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523–530 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partly funded through NSF-GRFP (2021321972, O.S.), RMM (091620TR012, E.L.S.), Mayo Clinic Center for Individualized Medicine (S.S.K.), Mayo Clinic President’s Strategic Initiative Funds (S.S.K.), Mayo Clinic Center for Regenerative Biotherapeutics (S.S.K.), Mayo Clinic Comprehensive Cancer Center (S.S.K.), National Comprehensive Cancer Network (S.S.K.), National Institutes of Health grants (K12CA090628, S.S.K. and R37CA266344-01, S.S.K.), Department of Defense Grant (CA201127, S.S.K.), Predolin Foundation (R.L.S. and S.S.K.) and the generosity of Donald Porteous (S.S.K.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was carried out by O.S. and S.S.K. Methodology was planned and carried out by O.S., M.H., K.J.S., M.J.C., E.L.S., T.N.H., R.L.S. and S.S.K. Investigation was performed by O.S., R.L.S., M.H., E.L.S. and T.N.H. Visualization was carried out by O.S. Formal analysis was performed by O.S. The original draft was written by O.S. and S.S.K. Review and editing was carried out by O.S., E.L.S. and S.S.K. Funding acquisition was performed by O.S., R.L.S., E.L.S. and S.S.K.; and supervision was carried out by S.S.K. All authors edited and approved the final version of the paper.

Corresponding author

Correspondence to Saad S. Kenderian.

Ethics declarations

Competing interests

S.S.K. is an inventor on patents in the field of CAR immunotherapy that are licensed to Novartis (through an agreement between Mayo Clinic, University of Pennsylvania and Novartis) and MustangBio (through Mayo Clinic). M.J.C., R.L.S. and S.S.K. are inventors on patents in the field of CAR immunotherapy that are licensed to Humanigen (through Mayo Clinic). M.H. and S.S.K. are inventors on patents in the field of CAR immunotherapy that are licensed to Mettaforge (through Mayo Clinic). S.S.K. receives research funding from Kite, Gilead, Juno, BMS, Novartis, Humanigen, MorphoSys, Tolero, Sunesis/Viracta, LifEngine Animal Health Laboratories Inc. and Lentigen. S.S.K. has participated in advisory meetings with Kite/Gilead, Humanigen, Juno/BMS, Capstan Bio and Novartis. S.S.K. has served on the data safety and monitoring board with Humanigen and Carisma. S.S.K. has served as consultant for Torque, Calibr, Novartis, Capstan Bio, Carisma and Humanigen. O.S., R.L.S., M.H., E.E.T., K.J.S., M.J.C., E.L.S. and S.S.K. have intellectual property in the CAR-MSC technology.

Peer review

Peer review information

Nature Biomedical Engineering thanks Hinrich Abken, Kailin Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 EcCAR-MSC effects on CART effector functions in in vivo tumor model.

a, Comparison of EcadNALM6 and Ecad+ NALM6 tumor flux measurements across control mice without CART19 cell infusion. Displaying mean ± SEM with statistics by 2-way ANOVA (n = 4–5 mice per group). b, c, Relative levels of luc+ EcadNALM6 (left) and luc+ Ecad+ NALM6 (right) as measured by luminescence following 24-hour in vitro coculture with UTD-MSCs or EcCAR-MSCs at varying MSC:NALM6 ratios. Data displaying mean ± s.d. with statistics by 2-way ANOVA (n = 2 replicates per group). d, Schema of NALM6 and JeKo-1 tumor models: NSG mice were engrafted with luciferase+ CD19+ Nalm6 or JeKo-1 cells (1 × 106 i.v.) and treated with CART19 (1 × 106 cells i.v.) and irradiated Ecad+ cell line. Mice were then randomized to receive UTD-MSCs or EcCAR-MSCs (1 × 106 cells i.p.) and monitored biweekly for BLI and survival. Image created with BioRender.com. e, Tumor flux following CART19 infusion in Jeko-1 model, comparing EcCAR-MSCs, UTD-MSCs, or no MSC treatment. Data showing mean ± SEM with statistical analysis by 2-way ANOVA (n = 2–5 mice per group) f, Tumor flux measurements across MSC administration groups following CART19 infusion in NALM6 model. Displaying mean ± SEM with statistics by 2-way ANOVA (n = 3–4 mice per group, 2 independent experiments). g, Survival outcomes of EcCAR-MSCs compared to UTD-MSCs and no MSC control groups. Statistics by Kaplan-Meier survival analysis (n = 3–4 mice per group, 2 independent experiments). For all panels, ns=p ≥ 0.05 and significant p values are displayed.

Source data

Extended Data Fig. 2 RNAseq pathway analysis and cytokine secretion.

a, Differentially expressed genes in unstimulated EcCAR-MSCs vs. UTD-MSCs, Ecad-stimulated vs. unstimulated EcCAR-MSCs, Ecad−stimulated vs. unstimulated UTD-MSCs, and Ecad-stimulated EcCAR-MSCs vs. UTD-MSCs. Data displaying significantly unregulated and downregulated gene counts within comparisons with adj. p value < 0.01 and ± 1-log fold change. Transcriptional alterations induced by Ecad stimulation of CAR-MSCs included 2362 significant genes vs. EcCAR-MSC alone and 3032 significant genes vs. Ecad stimulated UTD-MSCs. Transcriptional alterations induced by CAR transduction included 606 significant genes. Transcriptional alterations induced by Ecad stimulation included 206 significant genes. b, Ingenuity Pathway Analysis (IPA) revealed upregulated canonical pathways in unstimulated EcCAR-MSCs vs. UTD-MSCs. Dashed line across x axis represents statistically significant enrichment for all pathways -log(p ≤ 0.05). (n = 3 MSC donors per group). c, Graphical Summaries generated through IPA machine learning algorithm illustrating most significant entities activated in unstimulated EcCAR-MSCs vs. UTD-MSCs and d, stimulated EcCAR-MSCs vs UTD-MSCs. Canonical pathways and activated molecules were used to predict meaningful functional impacts between datasets. e, Additional serum cytokine elevations found in peripheral blood from EcCAR-MSC-treated tumor xenograft mice as compared to UTD-MSC and control. Cytokines include macrophage-derived chemokine (MDC), growth related alpha protein (GRO), granulocyte macrophage colony-stimulating factor (GM-CSF), monocyte chemotactic protein 3 (MCP-3), and FMS-related tyrosine kinase 3 ligand (Flt-3L) in pg/mL. Data showing mean ± s.d. with statistical analysis determined by multiple t tests (n = 4–6 mice per group). For all panels, significant p values are displayed.

Source data

Extended Data Fig. 3 EcCAR-MSC safety profiles within in vivo canine models.

a, Schema for CAR-MSC manufacturing and safety analysis in healthy canine models: EcCARs with cross reactivity to human, mouse, and canine Ecad were lentivirally transduced into human MSCs and expanded in vitro for subsequent i.p. injection into healthy canine subjects. Subgroups were monitored for hematological and organ toxicity for 28 days. Image created with BioRender.com. b, Complete blood count levels displayed as a determinant of hematopoietic safety following administration of EcCAR-MSCs. This includes white blood cells, monocytes, lymphocytes, neutrophils, and platelets with short term (3 day) and long term (28 day) blood level monitoring following in vivo EcCAR-MSC injection as compared to baseline. Displaying mean ± s.d. of blood composition with statistics by 1-way ANOVA (n = 3 subjects per experimental group). c, Total protein, BUN, creatinine, albumin, and alkaline phosphatase levels depicted for safety confirmation with short term (3 day) and long term (28 day) monitoring following in vivo EcCAR-MSC injection. Displaying mean ± s.d. of blood composition with statistics by 1-way ANOVA (n = 3 subjects per experimental group). d, Bodyweight changes in healthy canines following administration of EcCAR-MSCS as compared to control. No significant differences in body weight changes were found between groups. Data showing mean ± s.d. of % weight change from baseline with statistical analysis performed by ordinary 1-way ANOVA, (n = 3 subjects per experimental group) e, Data displaying transverse colonic tissue sections of canines through H&E staining 28 days following administration at 20x and 40x magnification following treatment with human EcCAR-MSCs (left) or control (right). For all panels, ns=p ≥ 0.05.

Source data

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirpilla, O., Sakemura, R.L., Hefazi, M. et al. Mesenchymal stromal cells with chimaeric antigen receptors for enhanced immunosuppression. Nat. Biomed. Eng (2024). https://doi.org/10.1038/s41551-024-01195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-024-01195-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research